scispace - formally typeset
Search or ask a question
Author

Fabian Walter

Bio: Fabian Walter is an academic researcher from Max Planck Society. The author has contributed to research in topics: Galaxy & Star formation. The author has an hindex of 146, co-authored 999 publications receiving 83016 citations. Previous affiliations of Fabian Walter include California Institute of Technology & University of Bonn.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors investigate the CO excitation and interstellar medium conditions in a cold gas mass-selected sample of 22 star-forming galaxies at z = 0.46-3.60, observed as part of the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field (ASPECS).
Abstract: We investigate the CO excitation and interstellar medium (ISM) conditions in a cold gas mass-selected sample of 22 star-forming galaxies at z = 0.46–3.60, observed as part of the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field (ASPECS). Combined with Very Large Array follow-up observations, we detect a total of 34 CO $J\to J-1$ transitions with J = 1 up to 8 (and an additional 21 upper limits, up to J = 10) and 6 $[{\rm{C}}\,{\rm\small{I}}]$ ${}^{3}{P}_{1}{\to }^{3}\,{P}_{0}$ and ${}^{3}{P}_{2}{\to }^{3}\,{P}_{1}$ transitions (and 12 upper limits). The CO(2–1) and CO(3–2)-selected galaxies, at $\langle z\rangle =1.2$ and 2.5, respectively, exhibit a range in excitation in their mid-J = 4, 5 and high-J = 7, 8 lines, on average lower than (${L}_{\mathrm{IR}}$-brighter) BzK-color- and submillimeter-selected galaxies at similar redshifts. The former implies that a warm ISM component is not necessarily prevalent in gas mass-selected galaxies at $\langle z\rangle =1.2$. We use stacking and Large Velocity Gradient models to measure and predict the average CO ladders at z < 2 and z ≥ 2, finding ${r}_{21}=0.75\pm 0.11$ and ${r}_{31}=0.77\pm 0.14$, respectively. From the models, we infer that the galaxies at z ≥ 2 have intrinsically higher excitation than those at z < 2. This fits a picture in which the global excitation is driven by an increase in the star formation rate surface density of galaxies with redshift. We derive a neutral atomic carbon abundance of $(1.9\pm 0.4)\times {10}^{-5}$, comparable to the Milky Way and main-sequence galaxies at similar redshifts, and fairly high densities (≥104 cm−3), consistent with the low-J CO excitation. Our results imply a decrease in the cosmic molecular gas mass density at z ≥ 2 compared to previous ASPECS measurements.

60 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the detection of four rotational emission lines of water vapor, from energy levels Eu/k= 101 - 454 K, in the gravitationally lensed z=3.9 QSO host galaxy APM08279+5255.
Abstract: We present the detection of four rotational emission lines of water vapor, from energy levels Eu/k= 101 - 454 K, in the gravitationally lensed z=3.9 QSO host galaxy APM08279+5255. While the lowest H2O lines are collisionally excited in clumps of warm, dense gas (density of hydrogen nuclei n_H=(3.1 +/- 1.2) x 10^6 cm^-3, gas temperature T_g ~ 105 +/- 21 K), we find that the excitation of the higher lines is dominated by the intense local infrared radiation field. Since only collisionally excited emission contributes to gas cooling, we conclude that H2O is not a significant coolant of the warm molecular gas. Our excitation model requires the radiatively excited gas to be located in an extended region of high 100 micron opacity (tau_100 = 0.9 +/- 0.2). Locally, such extended infrared-opaque regions are found only in the nuclei of ultraluminous infrared galaxies. We propose a model where the infrared-opaque circumnuclear cloud, which is penetrated by the X-ray radiation field of the QSO nucleus, contains clumps of massive star formation where the H2O emission originates. The radiation pressure from the intense local infrared radiation field exceeds the thermal gas pressure by about an order of magnitude, suggesting close to Eddington-limited star formation in these clumps.

60 citations

Journal ArticleDOI
TL;DR: In this article, the radio and FIR luminosities of the two highest red-shift far-infrared (FIR) luminous QSOs SDSS J114816.65+525150.2 and J104845.05+463718.3 were compared at 1.4 GHz.
Abstract: We present sensitive imaging at 1.4 GHz of the two highest redshift far-infrared (FIR) luminous QSOs SDSS J114816.65+525150.2 (z=6.42) and SDSS J104845.05+463718.3 (z=6.2). Radio continuum emission is detected from J1148+5251 with S_{1.4} = 55 \pm 12 uJy, while J1048+4637 is marginally detected with S_{1.4} = 26 \pm 12 uJy. Comparison of the radio and FIR luminosities shows that both sources follow the radio-FIR correlation for star forming galaxies, with implied (massive) star formation rates \sim 10^3 M_sun year^{-1}, although we cannot rule-out as much as 50% of the FIR luminosity being powered by the AGN. Five bright (> 22 mJy) radio sources are detected within 8' of J1148+5251. This is a factor 30 more than expected for a random field. Two sources have SDSS redshifts, including a z = 1.633 radio loud quasar and a z = 0.05 radio galaxy. However, we do not find evidence for a galaxy cluster in the SDSS data, at least out to z = 0.2. Considering the faint SDSS magnitudes of the remaining radio sources, we conclude that the over-density of radio sources could either be a statistical fluke, or a very large scale structure (> 8 Mpc comoving) at z > 1. We also consider the possibility of gravitational lensing by the closest (in angle) bright galaxy in the SDSS data at z = 0.05, and conclude that the galaxy provides negligible magnification.

60 citations

Journal ArticleDOI
TL;DR: In this paper, a practical evaluation of the Multi-Scale CLEAN algorithm is presented, and the results of this comparison show that several of the well-known characteristics and issues of using classical CLEAN are significantly lessened (or eliminated completely) when using the multi-scaleCLEAN algorithm.
Abstract: A practical evaluation of the Multi-Scale CLEAN algorithm is presented. The data used in the comparisons are taken from The HI Nearby Galaxy Survey (THINGS). The implementation of Multi-Scale CLEAN in the CASA software package is used, although comparisons are made against the very similar Multi-Resolution CLEAN algorithm implemented in AIPS. Both are compared against the classical CLEAN algorithm (as implemented in AIPS). The results of this comparison show that several of the well-known characteristics and issues of using classical CLEAN are significantly lessened (or eliminated completely) when using the Multi-Scale CLEAN algorithm. Importantly, Multi-Scale CLEAN reduces significantly the effects of the clean `bowl' caused by missing short-spacings, and the `pedestal' of low-level un-cleaned flux (which affects flux scales and resolution). Multi-Scale CLEAN can clean down to the noise level without the divergence suffered by classical CLEAN. We discuss practical applications of the added contrast provided by Multi-Scale CLEAN using two selected astronomical examples: HI holes in the interstellar medium and anomalous gas structures outside the main galactic disk.

60 citations

Journal ArticleDOI
TL;DR: In this paper, the authors search for CO (1-0) and (2-1) emission with the IRAM 30m and SMT 10m telescopes in 32 nearby post-starburst galaxies drawn from the Sloan Digital Sky Survey.
Abstract: Post-starburst (or "E+A") galaxies are characterized by low H$\alpha$ emission and strong Balmer absorption, suggesting a recent starburst, but little current star formation. Although many of these galaxies show evidence of recent mergers, the mechanism for ending the starburst is not yet understood. To study the fate of the molecular gas, we search for CO (1-0) and (2-1) emission with the IRAM 30m and SMT 10m telescopes in 32 nearby ($0.01

60 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The second Gaia data release, Gaia DR2 as mentioned in this paper, is a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products.
Abstract: Context. We present the second Gaia data release, Gaia DR2, consisting of astrometry, photometry, radial velocities, and information on astrophysical parameters and variability, for sources brighter than magnitude 21. In addition epoch astrometry and photometry are provided for a modest sample of minor planets in the solar system. Aims: A summary of the contents of Gaia DR2 is presented, accompanied by a discussion on the differences with respect to Gaia DR1 and an overview of the main limitations which are still present in the survey. Recommendations are made on the responsible use of Gaia DR2 results. Methods: The raw data collected with the Gaia instruments during the first 22 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into this second data release, which represents a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products. Results: Gaia DR2 contains celestial positions and the apparent brightness in G for approximately 1.7 billion sources. For 1.3 billion of those sources, parallaxes and proper motions are in addition available. The sample of sources for which variability information is provided is expanded to 0.5 million stars. This data release contains four new elements: broad-band colour information in the form of the apparent brightness in the GBP (330-680 nm) and GRP (630-1050 nm) bands is available for 1.4 billion sources; median radial velocities for some 7 million sources are presented; for between 77 and 161 million sources estimates are provided of the stellar effective temperature, extinction, reddening, and radius and luminosity; and for a pre-selected list of 14 000 minor planets in the solar system epoch astrometry and photometry are presented. Finally, Gaia DR2 also represents a new materialisation of the celestial reference frame in the optical, the Gaia-CRF2, which is the first optical reference frame based solely on extragalactic sources. There are notable changes in the photometric system and the catalogue source list with respect to Gaia DR1, and we stress the need to consider the two data releases as independent. Conclusions: Gaia DR2 represents a major achievement for the Gaia mission, delivering on the long standing promise to provide parallaxes and proper motions for over 1 billion stars, and representing a first step in the availability of complementary radial velocity and source astrophysical information for a sample of stars in the Gaia survey which covers a very substantial fraction of the volume of our galaxy.

8,308 citations

Journal ArticleDOI
01 Dec 2010
TL;DR: The Wide-field Infrared Survey Explorer (WISE) is mapping the whole sky following its launch on 14 December 2009 and completed its first full coverage of the sky on July 17 as discussed by the authors.
Abstract: The all sky surveys done by the Palomar Observatory Schmidt, the European Southern Observatory Schmidt, and the United Kingdom Schmidt, the InfraRed Astronomical Satellite and the 2 Micron All Sky Survey have proven to be extremely useful tools for astronomy with value that lasts for decades. The Wide-field Infrared Survey Explorer is mapping the whole sky following its launch on 14 December 2009. WISE began surveying the sky on 14 Jan 2010 and completed its first full coverage of the sky on July 17. The survey will continue to cover the sky a second time until the cryogen is exhausted (anticipated in November 2010). WISE is achieving 5 sigma point source sensitivities better than 0.08, 0.11, 1 and 6 mJy in unconfused regions on the ecliptic in bands centered at wavelengths of 3.4, 4.6, 12 and 22 micrometers. Sensitivity improves toward the ecliptic poles due to denser coverage and lower zodiacal background. The angular resolution is 6.1", 6.4", 6.5" and 12.0" at 3.4, 4.6, 12 and 22 micrometers, and the astrometric precision for high SNR sources is better than 0.15".

7,182 citations

Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +229 moreInstitutions (70)
TL;DR: In this article, the authors present cosmological parameter results from the full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction.
Abstract: We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters Improved modelling of the small-scale polarization leads to more robust constraints on manyparameters,withresidualmodellinguncertaintiesestimatedtoaffectthemonlyatthe05σlevelWefindgoodconsistencywiththestandard spatially-flat6-parameter ΛCDMcosmologyhavingapower-lawspectrumofadiabaticscalarperturbations(denoted“base ΛCDM”inthispaper), from polarization, temperature, and lensing, separately and in combination A combined analysis gives dark matter density Ωch2 = 0120±0001, baryon density Ωbh2 = 00224±00001, scalar spectral index ns = 0965±0004, and optical depth τ = 0054±0007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits) The angular acoustic scale is measured to 003% precision, with 100θ∗ = 10411±00003Theseresultsareonlyweaklydependentonthecosmologicalmodelandremainstable,withsomewhatincreasederrors, in many commonly considered extensions Assuming the base-ΛCDM cosmology, the inferred (model-dependent) late-Universe parameters are: HubbleconstantH0 = (674±05)kms−1Mpc−1;matterdensityparameterΩm = 0315±0007;andmatterfluctuationamplitudeσ8 = 0811±0006 We find no compelling evidence for extensions to the base-ΛCDM model Combining with baryon acoustic oscillation (BAO) measurements (and consideringsingle-parameterextensions)weconstraintheeffectiveextrarelativisticdegreesoffreedomtobe Neff = 299±017,inagreementwith the Standard Model prediction Neff = 3046, and find that the neutrino mass is tightly constrained toPmν < 012 eV The CMB spectra continue to prefer higher lensing amplitudesthan predicted in base ΛCDM at over 2σ, which pulls some parameters that affect thelensing amplitude away from the ΛCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAOdataThejointconstraintwithBAOmeasurementsonspatialcurvatureisconsistentwithaflatuniverse, ΩK = 0001±0002Alsocombining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w0 = −103±003, consistent with a cosmological constant We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r0002 < 006 Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-ΛCDM cosmology are in excellent agreement with observations The Planck base-ΛCDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey’s combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 36σ, tension with local measurements of the Hubble constant (which prefer a higher value) Simple model extensions that can partially resolve these tensions are not favoured by the Planck data

4,688 citations

Journal ArticleDOI
TL;DR: Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging.
Abstract: The status of experimental tests of general relativity and of theoretical frameworks for analyzing them is reviewed and updated. Einstein’s equivalence principle (EEP) is well supported by experiments such as the Eotvos experiment, tests of local Lorentz invariance and clock experiments. Ongoing tests of EEP and of the inverse square law are searching for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging. Gravitational wave damping has been detected in an amount that agrees with general relativity to better than half a percent using the Hulse-Taylor binary pulsar, and a growing family of other binary pulsar systems is yielding new tests, especially of strong-field effects. Current and future tests of relativity will center on strong gravity and gravitational waves.

3,394 citations

Journal ArticleDOI
TL;DR: In this article, a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors.
Abstract: On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of $\sim$1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg$^2$ at a luminosity distance of $40^{+8}_{-8}$ Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Msun. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at $\sim$40 Mpc) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over $\sim$10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position $\sim$9 and $\sim$16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. (Abridged)

3,180 citations