scispace - formally typeset
Search or ask a question
Author

Fabienne Justy

Bio: Fabienne Justy is an academic researcher from University of Montpellier. The author has contributed to research in topics: Population & Wolbachia. The author has an hindex of 17, co-authored 36 publications receiving 882 citations. Previous affiliations of Fabienne Justy include Centre national de la recherche scientifique.

Papers
More filters
Journal ArticleDOI
01 Apr 1996-Genetics
TL;DR: Examination of the consequences of selfing and bottlenecks on genetic polymorphism using microsatellite markers in 14 natural populations of the hermaphrodite freshwater snail Bulinus truncatus revealed an unexpectedly high levels of genetic variation.
Abstract: Hermaphrodite tropical freshwater snails provide a good opportunity to study the effects of mating system and genetic drift on population genetic structure because they are self-fertile and they occupy transient patchily distributed habitats (ponds). Up to now the lack of detectable allozyme polymorphism prevented any intrapopulation studies. In this paper, we examine the consequences of selfing and bottlenecks on genetic polymorphism using microsatellite markers in 14 natural populations (under a hierarchical sampling design) of the hermaphrodite freshwater snail Bulinus truncatus. These population genetics data allowed us to discuss the currently available mutation models for microsatellite sequences. Microsatellite markers revealed an unexpectedly high levels of genetic variation with <=41 alleles for one locus and gene diversity of 0.20-0.75 among populations. The values of any estimator of F(is) indicate high selfing rates in all populations. Linkage disequilibria observed at all loci for some populations may also indicate high levels of inbreeding. The large extent of genetic differentiation measured by F(st), R(st) or by a test for homogeneity between genic distributions is explained by both selfing and bottlenecks. Despite a limited gene flow, migration events could be detected when comparing different populations within ponds.

82 citations

Journal ArticleDOI
TL;DR: The results suggest that highly variable loci might not always be the best suited markers to quantify levels of gene flow among populations, and suggest that differences in single‐locus pattern could mainly be an effect of stochastic variation for allozymes and a effect of variation in mutation rate for microsatellites.
Abstract: Centaurea corymbosa Pourret (Asteraceae) is a narrow endemic species known only from six populations located in a 3-km2 area in the south of France. Earlier field experiments have suggested that pollen and seed dispersal were highly restricted within and among populations. Consistent with the field results, populations were highly differentiated for five allozyme loci and among-population variation fitted an isolation-by-distance model. In the present study, we investigated the genetic structure of C. corymbosa using six microsatellite loci. As with allozymes, microsatellites revealed no within-population structure and a large differentiation among populations. However, allozyme loci were less powerful than microsatellites in detecting the extent of gene flow assessed by assignment tests. The patterns of structuration greatly varied among loci for both types of marker; we suggest that differences in single-locus pattern could mainly be an effect of stochastic variation for allozymes and an effect of variation in mutation rate for microsatellites. In contrast to the multilocus results, the two most polymorphic microsatellite loci did not show any isolation-by-distance pattern. Our results suggest that highly variable loci might not always be the best suited markers to quantify levels of gene flow among populations.

77 citations

Journal ArticleDOI
TL;DR: It is shown here that the remarkable diversity of CI in the C. pipiens complex is due to the presence, in all tested wPip genomes, of several copies of the cidA-cidB operon, which undergoes diversification through recombination events, consistent with the hypothesis of a toxin–antitoxin system.
Abstract: Culex pipiens mosquitoes are infected with Wolbachia (wPip) that cause an important diversity of cytoplasmic incompatibilities (CIs). Functional transgenic studies have implicated the cidA-cidB operon from wPip and its homolog in wMel in CI between infected Drosophila males and uninfected females. However, the genetic basis of the CI diversity induced by different Wolbachia strains was unknown. We show here that the remarkable diversity of CI in the C. pipiens complex is due to the presence, in all tested wPip genomes, of several copies of the cidA-cidB operon, which undergoes diversification through recombination events. In 183 isofemale lines of C. pipiens collected worldwide, specific variations of the cidA-cidB gene repertoires are found to match crossing types. The diversification of cidA-cidB is consistent with the hypothesis of a toxin–antitoxin system in which the gene cidB co-diversifies with the gene cidA, particularly in putative domains of reciprocal interactions.

69 citations

Journal ArticleDOI
TL;DR: Using Illumina shotgun sequencing, a robust phylogenetic framework is inferred that reveals several newly supported nodes as well as the tempo of the higher level diversification of these rodents, and leads to a new higher level classification of two subfamilies: Euryzygomatomyinae and Echimyinae.
Abstract: Echimyidae is one of the most speciose and ecologically diverse rodent families in the world, occupying a wide range of habitats in the Neotropics. However, a resolved phylogeny at the genus-level is still lacking for these 22 genera of South American spiny rats, including the coypu (Myocastorinae), and 5 genera of West Indian hutias (Capromyidae) relatives. Here, we used Illumina shotgun sequencing to assemble 38 new complete mitogenomes, establishing Echimyidae, and Capromyidae as the first major rodent families to be completely sequenced at the genus-level for their mitochondrial DNA. Combining mitogenomes and nuclear exons, we inferred a robust phylogenetic framework that reveals several newly supported nodes as well as the tempo of the higher level diversification of these rodents. Incorporating the full generic diversity of extant echimyids leads us to propose a new higher level classification of two subfamilies: Euryzygomatomyinae and Echimyinae. Of note, the enigmatic Carterodon displays fast-evolving mitochondrial and nuclear sequences, with a long branch that destabilizes the deepest divergences of the echimyid tree, thereby challenging the sister-group relationship between Capromyidae and Euryzygomatomyinae. Biogeographical analyses involving higher level taxa show that several vicariant and dispersal events impacted the evolutionary history of echimyids. The diversification history of Echimyidae seems to have been influenced by two major historical factors, namely (1) recurrent connections between Atlantic and Amazonian Forests and (2) the Northern uplift of the Andes.

64 citations

Journal ArticleDOI
TL;DR: The results indicate that the western population derives from a few animals which recently colonized this region, possibly after a human introduction, and that the captive breeding programme should use animals from different parts of the species’ present distribution area.
Abstract: In species of great conservation concern, special attention must be paid to their phylogeography, in particular the origin of animals for captive breeding and reintroduction. The endangered European mink lives now in at least three well-separated populations in northeast, southeast and west Europe. Our aim is to assess the genetic structure of these populations to identify ‘distinct population segments’ (DPS) and advise captive breeding programmes. First, the mtDNA control region was completely sequenced in 176 minks and 10 polecats. The analysis revealed that the western population is characterized by a single mtDNA haplotype that is closely related to those in eastern regions but nevertheless, not found there to date. The northeast European animals are much more variable (π π π = 0.012, h = 0.939), with the southeast samples intermediate (π = 0.0012, h = 0.469). Second, 155 European mink were genotyped using six microsatellites. The latter display the same trends of genetic diversity among regions as mtDNA [gene diversity and allelic richness highest in northeast Europe ( H E = 0.539, R S = 3.76), lowest in west Europe ( H E = 0.379, R S = 2.12)], and provide evidences that the southeast and possibly the west populations have undergone a recent bottleneck. Our results indicate that the western population derives from a few animals which recently colonized this region, possibly after a human introduction. Microsatellite data also reveal that isolation by distance occurs in the western population, causing some inbreeding because related individuals mate. As genetic data indicate that the three populations have not undergone independent evolutionary histories for long (no phylogeographical structure), they should not be considered as distinct DPS. In conclusion, the captive breeding programme should use animals from different parts of the species’ present distribution area.

63 citations


Cited by
More filters
Journal ArticleDOI
01 Mar 2003-Genetics
TL;DR: In this article, a new Bayesian method that uses individual multilocus genotypes to estimate rates of recent immigration (over the last several generations) among populations is presented, and the method also estimates the posterior probability distributions of individual immigrant ancestries, population allele frequencies, population inbreeding coefficients, and other parameters of potential interest.
Abstract: A new Bayesian method that uses individual multilocus genotypes to estimate rates of recent immigration (over the last several generations) among populations is presented. The method also estimates the posterior probability distributions of individual immigrant ancestries, population allele frequencies, population inbreeding coefficients, and other parameters of potential interest. The method is implemented in a computer program that relies on Markov chain Monte Carlo techniques to carry out the estimation of posterior probabilities. The program can be used with allozyme, microsatellite, RFLP, SNP, and other kinds of genotype data. We relax several assumptions of early methods for detecting recent immigrants, using genotype data; most significantly, we allow genotype frequencies to deviate from Hardy-Weinberg equilibrium proportions within populations. The program is demonstrated by applying it to two recently published microsatellite data sets for populations of the plant species Centaurea corymbosa and the gray wolf species Canis lupus. A computer simulation study suggests that the program can provide highly accurate estimates of migration rates and individual migrant ancestries, given sufficient genetic differentiation among populations and sufficient numbers of marker loci.

1,704 citations

Journal ArticleDOI
TL;DR: Interspecific studies show that microsatellites are poor markers for phylogenetic inference, however, these studies are fuelling discussions on directional mutation and the role of selection and recombination in their evolution, Nonetheless, it remains true that microSatellites may be considered as good, neutral mendelian markers.
Abstract: Population genetics studies using microsatellites, and data on their molecular dynamics, are on the increase. But, so far, no consensus has emerged on which mutation model should be used, though this is of paramount importance for analysis of population genetic structure. However, this is not surprising given the variety of microsatellite molecular motifs. Null alleles may be disturbing for population studies, even though their presence can be detected through careful population analyses, while homoplasy seems of little concern, at least over short evolutionary scales. Interspecific studies show that microsatellites are poor markers for phylogenetic inference. However, these studies are fuelling discussions on directional mutation and the role of selection and recombination in their evolution. Nonetheless, it remains true that microsatellites may be considered as good, neutral mendelian markers.

1,619 citations

Journal ArticleDOI
TL;DR: This synthesis presents a multistep screening process to evaluate candidate loci for inclusion in a genetic study that is broadly targeted to both novice and experienced geneticists alike and aims to encourage the use and consistent reporting of thorough marker screening to ensure high quality data.
Abstract: Recent improvements in genetic analysis and genotyping methods have resulted in a rapid expansion of the power of molecular markers to address ecological questions. Microsatellites have emerged as the most popular and versatile marker type for ecological applications. The rise of commercial services that can isolate microsatellites for new study species and genotype samples at reasonable prices presents ecologists with the unprecedented ability to employ genetic approaches without heavy investment in specialized equipment. Nevertheless, the lack of accessible, synthesized information on the practicalities and pitfalls of using genetic tools impedes ecologists ability to make informed decisions on using molecular approaches and creates the risk that some will use microsatellites without understanding the steps needed to evaluate the quality of a genetic data set. The first goal of this synthesis is to provide an overview of the strengths and limitations of microsatellite markers and the risks, cost and time requirements of isolating and using microsatellites with the aid of commercial services. The second goal is to encourage the use and consistent reporting of thorough marker screening to ensure high quality data. To that end, we present a multistep screening process to evaluate candidate loci for inclusion in a genetic study that is broadly targeted to both novice and experienced geneticists alike.

1,601 citations

Journal ArticleDOI
TL;DR: The objectives of BIOS 781 are to present basic population and quantitative genetic principles, including classical genetics, chromosomal theory of inheritance, and meiotic recombination, and methods for genome-wide association and stratification control.
Abstract: LEARNING The objectives of BIOS 781 are to present: OBJECTIVES: 1. basic population and quantitative genetic principles, including classical genetics, chromosomal theory of inheritance, and meiotic recombination 2. an exposure to QTL mapping methods of complex quantitative traits and linkage methods to detect co-segregation with disease 3. methods for assessing marker-disease linkage disequilibrium, including case-control approaches 4. methods for genome-wide association and stratification control.

1,516 citations

Journal ArticleDOI
TL;DR: This review discusses the consequences of different temporal and spatial sampling strategies on differentiation estimation, and moves to statistical problems directly associated with the estimation of population structuring itself, with particular emphasis on the effects of high mutation rates and mutation patterns of microsatellite loci.
Abstract: Microsatellite markers are routinely used to investigate the genetic structuring of natural populations. The knowledge of how genetic variation is partitioned among populations may have important implications not only in evolutionary biology and ecology, but also in conservation biology. Hence, reliable estimates of population differentiation are crucial to understand the connectivity among populations and represent important tools to develop conservation strategies. The estimation of differentiation is c from Wright's FST and/or Slatkin's RST, an FST -analogue assuming a stepwise mutation model. Both these statistics have their drawbacks. Furthermore, there is no clear consensus over their relative accuracy. In this review, we first discuss the consequences of different temporal and spatial sampling strategies on differentiation estimation. Then, we move to statistical problems directly associated with the estimation of population structuring itself, with particular emphasis on the effects of high mutation rates and mutation patterns of microsatellite loci. Finally, we discuss the biological interpretation of population structuring estimates.

1,167 citations