scispace - formally typeset
Search or ask a question
Author

Fabio A. González

Bio: Fabio A. González is an academic researcher from National University of Colombia. The author has contributed to research in topics: Image retrieval & Deep learning. The author has an hindex of 41, co-authored 281 publications receiving 7362 citations. Previous affiliations of Fabio A. González include University of Cantabria & University of Valencia.


Papers
More filters
Proceedings ArticleDOI
TL;DR: The method yielded the best quantitative results for automatic detection of IDC regions in WSI in terms of F-measure and balanced accuracy and suggest that at least some of the tissue classification mistakes were less due to any fundamental problems associated with the approach, than the inherent limitations in obtaining a very highly granular annotation of the diseased area of interest by an expert pathologist.
Abstract: This paper presents a deep learning approach for automatic detection and visual analysis of invasive ductal carcinoma (IDC) tissue regions in whole slide images (WSI) of breast cancer (BCa). Deep learning approaches are learn-from-data methods involving computational modeling of the learning process. This approach is similar to how human brain works using dierent interpretation levels or layers of most representative and useful features resulting into a hierarchical learned representation. These methods have been shown to outpace traditional approaches of most challenging problems in several areas such as speech recognition and object detection. Invasive breast cancer detection is a time consuming and challenging task primarily because it involves a pathologist scanning large swathes of benign regions to ultimately identify the areas of malignancy. Precise delineation of IDC in WSI is crucial to the subsequent estimation of grading tumor aggressiveness and predicting patient outcome. DL approaches are particularly adept at handling these types of problems, especially if a large number of samples are available for training, which would also ensure the generalizability of the learned features and classier. The DL framework in this paper extends a number of convolutional neural networks (CNN) for visual semantic analysis of tumor regions for diagnosis support. The CNN is trained over a large amount of image patches (tissue regions) from WSI to learn a hierarchical part-based representation. The method was evaluated over a WSI dataset from 162 patients diagnosed with IDC. 113 slides were selected for training and 49 slides were held out for independent testing. Ground truth for quantitative evaluation was provided via expert delineation of the region of cancer by an expert pathologist on the digitized slides. The experimental evaluation was designed to measure classier accuracy in detecting IDC tissue regions in WSI. Our method yielded the best quantitative results for automatic detection of IDC regions in WSI in terms of F-measure and balanced accuracy (71.80%, 84.23%), in comparison with an approach using handcrafted image features (color, texture and edges, nuclear textural and architecture), and a machine learning classier for invasive tumor classication using a Random Forest. The best performing handcrafted features were fuzzy color histogram (67.53%, 78.74%) and RGB histogram (66.64%, 77.24%). Our results also suggest that at least some of the tissue classication mistakes (false positives and false negatives) were less due to any fundamental problems associated with the approach, than the inherent limitations in obtaining a very highly granular annotation of the diseased area of interest by an expert pathologist.

481 citations

Journal ArticleDOI
TL;DR: The results from the Assessment of Mitosis Detection Algorithms 2013 (AMIDA13) challenge are described and the top performing method has an error rate that is comparable to the inter-observer agreement among pathologists.

405 citations

Journal ArticleDOI
TL;DR: A technique inspired by the negative selection mechanism of the immune system that can detect foreign patterns in the complement (nonself) space is presented, which demonstrates the usefulness of such a technique to detect a wide variety of intrusive activities on networked computers.
Abstract: This paper presents a technique inspired by the negative selection mechanism of the immune system that can detect foreign patterns in the complement (nonself) space. In particular, the novel pattern detectors (in the complement space) are evolved using a genetic search, which could differentiate varying degrees of abnormality in network traffic. The paper demonstrates the usefulness of such a technique to detect a wide variety of intrusive activities on networked computers. We also used a positive characterization method based on a nearest-neighbor classification. Experiments are performed using intrusion detection data sets and tested for validation. Some results are reported along with analysis and concluding remarks.

390 citations

Journal ArticleDOI
TL;DR: This study presents a new method that employs a convolutional neural network for detecting presence of invasive tumor on whole slide images that involves training the classifier on nearly 400 exemplars from multiple different sites, and scanners, and then independently validating on almost 200 cases from The Cancer Genome Atlas.
Abstract: With the increasing ability to routinely and rapidly digitize whole slide images with slide scanners, there has been interest in developing computerized image analysis algorithms for automated detection of disease extent from digital pathology images. The manual identification of presence and extent of breast cancer by a pathologist is critical for patient management for tumor staging and assessing treatment response. However, this process is tedious and subject to inter- and intra-reader variability. For computerized methods to be useful as decision support tools, they need to be resilient to data acquired from different sources, different staining and cutting protocols and different scanners. The objective of this study was to evaluate the accuracy and robustness of a deep learning-based method to automatically identify the extent of invasive tumor on digitized images. Here, we present a new method that employs a convolutional neural network for detecting presence of invasive tumor on whole slide images. Our approach involves training the classifier on nearly 400 exemplars from multiple different sites, and scanners, and then independently validating on almost 200 cases from The Cancer Genome Atlas. Our approach yielded a Dice coefficient of 75.86%, a positive predictive value of 71.62% and a negative predictive value of 96.77% in terms of pixel-by-pixel evaluation compared to manually annotated regions of invasive ductal carcinoma.

380 citations

Journal ArticleDOI
TL;DR: An innovative representation learning framework for breast cancer diagnosis in mammography that integrates deep learning techniques to automatically learn discriminative features avoiding the design of specific hand-crafted image-based feature detectors is described.

366 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: This survey tries to provide a structured and comprehensive overview of the research on anomaly detection by grouping existing techniques into different categories based on the underlying approach adopted by each technique.
Abstract: Anomaly detection is an important problem that has been researched within diverse research areas and application domains. Many anomaly detection techniques have been specifically developed for certain application domains, while others are more generic. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection. We have grouped existing techniques into different categories based on the underlying approach adopted by each technique. For each category we have identified key assumptions, which are used by the techniques to differentiate between normal and anomalous behavior. When applying a given technique to a particular domain, these assumptions can be used as guidelines to assess the effectiveness of the technique in that domain. For each category, we provide a basic anomaly detection technique, and then show how the different existing techniques in that category are variants of the basic technique. This template provides an easier and more succinct understanding of the techniques belonging to each category. Further, for each category, we identify the advantages and disadvantages of the techniques in that category. We also provide a discussion on the computational complexity of the techniques since it is an important issue in real application domains. We hope that this survey will provide a better understanding of the different directions in which research has been done on this topic, and how techniques developed in one area can be applied in domains for which they were not intended to begin with.

9,627 citations

01 Jan 2002

9,314 citations

Journal ArticleDOI
TL;DR: This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year, to survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks.

8,730 citations