scispace - formally typeset
Search or ask a question
Author

Fabio Graziosi

Bio: Fabio Graziosi is an academic researcher from University of L'Aquila. The author has contributed to research in topics: Fading & Wireless sensor network. The author has an hindex of 29, co-authored 195 publications receiving 2864 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel and unified communication-theoretic framework for the analysis of channel capacity over fading channels is proposed and it is shown that the framework can handle various fading channel models, communication types, and adaptation transmission policies.
Abstract: Since the trail-blazing paper of C. Shannon in 1948, channel capacity has been regarded as the fundamental information-theoretic performance measure to predict the maximum information rate of a communication system. However, in contrast with the analysis of other important performance measures of wireless communication systems, a unified and general approach for computing the channel capacity over fading channels has yet to be proposed. Motivated by this consideration, we propose a novel and unified communication-theoretic framework for the analysis of channel capacity over fading channels. It is shown that the framework can handle various fading channel models, communication types, and adaptation transmission policies. In particular, the specific contributions of this paper are as follows: (1) We introduce a transform operator, called the E i-transform, which is shown to provide a unified tool to compute the channel capacity with either side information at the receiver or side information at the transmitter and the receiver, directly from the moment-generating function (MGF) or the MGF and the truncated MGF of the Signal-to-Noise-Ratio (SNR) at the receiver, respectively; (2) we show that when either a channel inversion or a truncated channel inversion adaptation policy is considered, the channel capacity can readily be computed from the Mellin or the Hankel transform of the MGF of the received SNR, respectively; (3) a simple yet effective numerical method for the analysis of higher order statistics (HOS) of the channel capacity with side information at the receiver is introduced; and (4) some efficient and ad hoc numerical methods are explicitly introduced to allow the efficient computation of the proposed frameworks. Numerical and simulation results are also shown and compared to substantiate the analytical derivation.

145 citations

Journal ArticleDOI
TL;DR: An explicit model for the cross-correlation function of the shadowing components affecting the links between a mobile station and two base stations is derived, which includes both the autocorrelation model proposed in earlier work by Gudmenson in 1991 for the single component.
Abstract: We derive an explicit model for the cross-correlation function of the shadowing components affecting the links between a mobile station and two base stations. This model includes both the autocorrelation model proposed in earlier work by Gudmenson in 1991 for the single component, and the cross-correlation early evidenced in the work by Graziano in 1978. The model is useful in analytical computations, e.g., of second order statistics of signal-to-interference ratio. The model can include the behavior of a time-variant cross-correlation at zero-time shift and of a non-homogeneous environment.

144 citations

Journal ArticleDOI
TL;DR: The framework relies on the Moment Generating Function (MGF-) based approach for performance analysis of communication systems over fading channels, and on some properties of the Laplace Transform, which allow to develop a single-integral relation between the M GF of a random variable and the MGF of its inverse.
Abstract: In this Letter, we propose a comprehensive framework for performance analysis of cooperative wireless systems using Amplify and Forward (AF) relay methods. The framework relies on the Moment Generating Function (MGF-) based approach for performance analysis of communication systems over fading channels, and on some properties of the Laplace Transform, which allow to develop a single-integral relation between the MGF of a random variable and the MGF of its inverse. Moreover, a simple lower bound for Outage Probability (Pout) and Outage Capacity (OC) computation is also introduced. Numerical and simulation results are provided to substantiate the accuracy of the proposed framework.

125 citations

Journal ArticleDOI
TL;DR: A single-integral closed-form analytical framework is developed to compute the Average Bit Error Probability (ABEP) of a mismatched detector for both SSK and TOSD-SSK modulations, and it is shown that SSK modulation is as robust as single-antenna systems to imperfect channel knowledge, and that TOSSk modulation is more robust to channel estimation errors than the Alamouti scheme.
Abstract: In this paper, we study the performance of space modulation for Multiple-Input-Multiple-Output (MIMO) wireless systems with imperfect channel knowledge at the receiver. We focus our attention on two transmission technologies, which are the building blocks of space modulation: i) Space Shift Keying (SSK) modulation; and ii) Time-Orthogonal-Signal-Design (TOSD-) SSK modulation, which is an improved version of SSK modulation providing transmit-diversity. We develop a single-integral closed-form analytical framework to compute the Average Bit Error Probability (ABEP) of a mismatched detector for both SSK and TOSD-SSK modulations. The framework exploits the theory of quadratic-forms in conditional complex Gaussian Random Variables (RVs) along with the Gil-Pelaez inversion theorem. The analytical model is very general and can be used for arbitrary transmit- and receive-antennas, fading distributions, fading spatial correlations, and training pilots. The analytical derivation is substantiated through Monte Carlo simulations, and it is shown, over independent and identically distributed (i.i.d.) Rayleigh fading channels, that SSK modulation is as robust as single-antenna systems to imperfect channel knowledge, and that TOSD-SSK modulation is more robust to channel estimation errors than the Alamouti scheme. Furthermore, it is pointed out that only few training pilots are needed to get reliable enough channel estimates for data detection, and that transmit- and receive-diversity of SSK and TOSD-SSK modulations are preserved even with imperfect channel knowledge.

99 citations

Journal ArticleDOI
TL;DR: A comprehensive framework for the analysis of cooperative dual-hop wireless systems over generalized fading channels, which use an amplify and forward (AF) relaying mechanism with blind and semi-blind relays, and shows that important performance indexes can be easily derived from the Meijer-G function.
Abstract: In the present contribution, we propose a comprehensive framework for the analysis of cooperative dual-hop wireless systems over generalized fading channels, which use an amplify and forward (AF) relaying mechanism with blind and semi-blind relays. In particular, the proposed framework provides either exact results or very accurate bounds for computing the moment generating function (MGF) of the end-to-end signal-to-noise ratio (SNR) for various fading channel models typically encountered in real propagation environments. Furthermore, with the help of the MGF-based approach for performance analysis of wireless systems over fading channels, we will show that important performance indexes can be easily derived from the MGF. With respect to previous published articles on the matter, the main contribution of the paper is twofold: i) by relying on the properties of the Meijer-G function, either exact expressions or accurate bounds for the MGF of the end-to-end SNR are provided, and ii) the analysis encompasses the vast majority of fading channel models. Numerical and simulation results will be compared to substantiate the analytical derivation.

90 citations


Cited by
More filters
Proceedings Article
01 Jan 1991
TL;DR: It is concluded that properly augmented and power-controlled multiple-cell CDMA (code division multiple access) promises a quantum increase in current cellular capacity.
Abstract: It is shown that, particularly for terrestrial cellular telephony, the interference-suppression feature of CDMA (code division multiple access) can result in a many-fold increase in capacity over analog and even over competing digital techniques. A single-cell system, such as a hubbed satellite network, is addressed, and the basic expression for capacity is developed. The corresponding expressions for a multiple-cell system are derived. and the distribution on the number of users supportable per cell is determined. It is concluded that properly augmented and power-controlled multiple-cell CDMA promises a quantum increase in current cellular capacity. >

2,951 citations

Journal ArticleDOI
TL;DR: The state-of-the-art survey of cooperative sensing is provided to address the issues of cooperation method, cooperative gain, and cooperation overhead.

1,800 citations

Journal ArticleDOI
TL;DR: This paper overviews the current research efforts on smart radio environments, the enabling technologies to realize them in practice, the need of new communication-theoretic models for their analysis and design, and the long-term and open research issues to be solved towards their massive deployment.
Abstract: Future wireless networks are expected to constitute a distributed intelligent wireless communications, sensing, and computing platform, which will have the challenging requirement of interconnecting the physical and digital worlds in a seamless and sustainable manner. Currently, two main factors prevent wireless network operators from building such networks: (1) the lack of control of the wireless environment, whose impact on the radio waves cannot be customized, and (2) the current operation of wireless radios, which consume a lot of power because new signals are generated whenever data has to be transmitted. In this paper, we challenge the usual “more data needs more power and emission of radio waves” status quo, and motivate that future wireless networks necessitate a smart radio environment: a transformative wireless concept, where the environmental objects are coated with artificial thin films of electromagnetic and reconfigurable material (that are referred to as reconfigurable intelligent meta-surfaces), which are capable of sensing the environment and of applying customized transformations to the radio waves. Smart radio environments have the potential to provide future wireless networks with uninterrupted wireless connectivity, and with the capability of transmitting data without generating new signals but recycling existing radio waves. We will discuss, in particular, two major types of reconfigurable intelligent meta-surfaces applied to wireless networks. The first type of meta-surfaces will be embedded into, e.g., walls, and will be directly controlled by the wireless network operators via a software controller in order to shape the radio waves for, e.g., improving the network coverage. The second type of meta-surfaces will be embedded into objects, e.g., smart t-shirts with sensors for health monitoring, and will backscatter the radio waves generated by cellular base stations in order to report their sensed data to mobile phones. These functionalities will enable wireless network operators to offer new services without the emission of additional radio waves, but by recycling those already existing for other purposes. This paper overviews the current research efforts on smart radio environments, the enabling technologies to realize them in practice, the need of new communication-theoretic models for their analysis and design, and the long-term and open research issues to be solved towards their massive deployment. In a nutshell, this paper is focused on discussing how the availability of reconfigurable intelligent meta-surfaces will allow wireless network operators to redesign common and well-known network communication paradigms.

1,504 citations

Journal ArticleDOI
TL;DR: Recent advances in research related to cognitive radios are surveyed, including the fundamentals of cognitive radio technology, architecture of a cognitive radio network and its applications, and important issues in dynamic spectrum allocation and sharing are investigated in detail.
Abstract: With the rapid deployment of new wireless devices and applications, the last decade has witnessed a growing demand for wireless radio spectrum. However, the fixed spectrum assignment policy becomes a bottleneck for more efficient spectrum utilization, under which a great portion of the licensed spectrum is severely under-utilized. The inefficient usage of the limited spectrum resources urges the spectrum regulatory bodies to review their policy and start to seek for innovative communication technology that can exploit the wireless spectrum in a more intelligent and flexible way. The concept of cognitive radio is proposed to address the issue of spectrum efficiency and has been receiving an increasing attention in recent years, since it equips wireless users the capability to optimally adapt their operating parameters according to the interactions with the surrounding radio environment. There have been many significant developments in the past few years on cognitive radios. This paper surveys recent advances in research related to cognitive radios. The fundamentals of cognitive radio technology, architecture of a cognitive radio network and its applications are first introduced. The existing works in spectrum sensing are reviewed, and important issues in dynamic spectrum allocation and sharing are investigated in detail.

1,329 citations

Journal ArticleDOI
01 Jan 2014
TL;DR: In this paper, the authors present a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges.
Abstract: A key challenge of future mobile communication research is to strike an attractive compromise between wireless network's area spectral efficiency and energy efficiency. This necessitates a clean-slate approach to wireless system design, embracing the rich body of existing knowledge, especially on multiple-input-multiple-ouput (MIMO) technologies. This motivates the proposal of an emerging wireless communications concept conceived for single-radio-frequency (RF) large-scale MIMO communications, which is termed as SM. The concept of SM has established itself as a beneficial transmission paradigm, subsuming numerous members of the MIMO system family. The research of SM has reached sufficient maturity to motivate its comparison to state-of-the-art MIMO communications, as well as to inspire its application to other emerging wireless systems such as relay-aided, cooperative, small-cell, optical wireless, and power-efficient communications. Furthermore, it has received sufficient research attention to be implemented in testbeds, and it holds the promise of stimulating further vigorous interdisciplinary research in the years to come. This tutorial paper is intended to offer a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges leading to the analysis of the technological issues associated with the implementation of SM-MIMO. The paper is concluded with the description of the world's first experimental activities in this vibrant research field.

1,171 citations