scispace - formally typeset
Search or ask a question
Author

Fábio M. Bayer

Bio: Fábio M. Bayer is an academic researcher from Universidade Federal de Santa Maria. The author has contributed to research in topics: Discrete cosine transform & Image compression. The author has an hindex of 20, co-authored 109 publications receiving 1472 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: An orthogonal approximation for the 8-point discrete cosine transform (DCT) is introduced, and could outperform state-of-the-art algorithms in low and high image compression scenarios, exhibiting at the same time a comparable computational complexity.
Abstract: An orthogonal approximation for the 8-point discrete cosine transform (DCT) is introduced. The proposed transformation matrix contains only zeros and ones; multiplications and bit-shift operations are absent. Close spectral behavior relative to the DCT was adopted as design criterion. The proposed algorithm is superior to the signed discrete cosine transform. It could also outperform state-of-the-art algorithms in low and high image compression scenarios, exhibiting at the same time a comparable computational complexity.

152 citations

Journal ArticleDOI
TL;DR: A novel 8-point DCT approximation that requires only 14 addition operations and no multiplications is introduced and is compared to state-of-the-art DCT approximations in terms of both algorithm complexity and peak signal-to-noise ratio.
Abstract: Video processing systems such as HEVC requiring low energy consumption needed for the multimedia market has lead to extensive development in fast algorithms for the efficient approximation of 2-D DCT transforms The DCT is employed in a multitude of compression standards due to its remarkable energy compaction properties Multiplier-free approximate DCT transforms have been proposed that offer superior compression performance at very low circuit complexity Such approximations can be realized in digital VLSI hardware using additions and subtractions only, leading to significant reductions in chip area and power consumption compared to conventional DCTs and integer transforms In this paper, we introduce a novel 8-point DCT approximation that requires only 14 addition operations and no multiplications The proposed transform possesses low computational complexity and is compared to state-of-the-art DCT approximations in terms of both algorithm complexity and peak signal-to-noise ratio The proposed DCT approximation is a candidate for reconfigurable video standards such as HEVC The proposed transform and several other DCT approximations are mapped to systolic-array digital architectures and physically realized as digital prototype circuits using FPGA technology and mapped to 45 nm CMOS technology

112 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed an 8-point DCT approximation that requires only 14 addition operations and no multiplications, compared to state-of-the-art DCT approximations in terms of both algorithm complexity and peak signal-to-noise ratio.
Abstract: Video processing systems such as HEVC requiring low energy consumption needed for the multimedia market has lead to extensive development in fast algorithms for the efficient approximation of 2-D DCT transforms. The DCT is employed in a multitude of compression standards due to its remarkable energy compaction properties. Multiplier-free approximate DCT transforms have been proposed that offer superior compression performance at very low circuit complexity. Such approximations can be realized in digital VLSI hardware using additions and subtractions only, leading to significant reductions in chip area and power consumption compared to conventional DCTs and integer transforms. In this paper, we introduce a novel 8-point DCT approximation that requires only 14 addition operations and no multiplications. The proposed transform possesses low computational complexity and is compared to state-of-the-art DCT approximations in terms of both algorithm complexity and peak signal-to-noise ratio. The proposed DCT approximation is a candidate for reconfigurable video standards such as HEVC. The proposed transform and several other DCT approximations are mapped to systolic-array digital architectures and physically realized as digital prototype circuits using FPGA technology and mapped to 45 nm CMOS technology.

107 citations

Journal ArticleDOI
TL;DR: In this article, a low-complexity 8-point orthogonal approximate discrete cosine transform (DCT) is introduced. But the proposed transform requires no multiplications or bit-shift operations.
Abstract: A low-complexity 8-point orthogonal approximate discrete cosine transform (DCT) is introduced. The proposed transform requires no multiplications or bit-shift operations. The derived fast algorithm requires only 14 additions, less than any existing DCT approximation. Moreover, in several image compression scenarios, the proposed transform could outperform the well-known signed DCT, as well as state-of the-art algorithms.

91 citations

Journal ArticleDOI
TL;DR: The proposed adaptive filtering process, called SpcShrink, is able to discriminate wavelet coefficients that significantly represent the signal of interest and shows superior performance when compared with competing algorithms.

84 citations


Cited by
More filters
Journal ArticleDOI

1,484 citations

Journal ArticleDOI
TL;DR: This paper offers the first in-depth look at the vast applications of THz wireless products and applications and provides approaches for how to reduce power and increase performance across several problem domains, giving early evidence that THz techniques are compelling and available for future wireless communications.
Abstract: Frequencies from 100 GHz to 3 THz are promising bands for the next generation of wireless communication systems because of the wide swaths of unused and unexplored spectrum. These frequencies also offer the potential for revolutionary applications that will be made possible by new thinking, and advances in devices, circuits, software, signal processing, and systems. This paper describes many of the technical challenges and opportunities for wireless communication and sensing applications above 100 GHz, and presents a number of promising discoveries, novel approaches, and recent results that will aid in the development and implementation of the sixth generation (6G) of wireless networks, and beyond. This paper shows recent regulatory and standard body rulings that are anticipating wireless products and services above 100 GHz and illustrates the viability of wireless cognition, hyper-accurate position location, sensing, and imaging. This paper also presents approaches and results that show how long distance mobile communications will be supported to above 800 GHz since the antenna gains are able to overcome air-induced attenuation, and present methods that reduce the computational complexity and simplify the signal processing used in adaptive antenna arrays, by exploiting the Special Theory of Relativity to create a cone of silence in over-sampled antenna arrays that improve performance for digital phased array antennas. Also, new results that give insights into power efficient beam steering algorithms, and new propagation and partition loss models above 100 GHz are given, and promising imaging, array processing, and position location results are presented. The implementation of spatial consistency at THz frequencies, an important component of channel modeling that considers minute changes and correlations over space, is also discussed. This paper offers the first in-depth look at the vast applications of THz wireless products and applications and provides approaches for how to reduce power and increase performance across several problem domains, giving early evidence that THz techniques are compelling and available for future wireless communications.

1,352 citations