scispace - formally typeset
Search or ask a question
Author

Fabio Martinon

Other affiliations: University of Lausanne
Bio: Fabio Martinon is an academic researcher from Harvard University. The author has contributed to research in topics: Inflammasome & NALP3. The author has an hindex of 26, co-authored 29 publications receiving 17754 citations. Previous affiliations of Fabio Martinon include University of Lausanne.

Papers
More filters
Journal ArticleDOI
09 Mar 2006-Nature
TL;DR: It is shown that MSU and CPPD engage the caspase-1-activating NALP3 (also called cryopyrin) inflammasome, resulting in the production of active interleukin (IL)-1β and IL-18 in mice deficient in the IL-1β receptor.
Abstract: Development of the acute and chronic inflammatory responses known as gout and pseudogout are associated with the deposition of monosodium urate (MSU) or calcium pyrophosphate dihydrate (CPPD) crystals, respectively, in joints and periarticular tissues. Although MSU crystals were first identified as the aetiological agent of gout in the eighteenth century and more recently as a 'danger signal' released from dying cells, little is known about the molecular mechanisms underlying MSU- or CPPD-induced inflammation. Here we show that MSU and CPPD engage the caspase-1-activating NALP3 (also called cryopyrin) inflammasome, resulting in the production of active interleukin (IL)-1beta and IL-18. Macrophages from mice deficient in various components of the inflammasome such as caspase-1, ASC and NALP3 are defective in crystal-induced IL-1beta activation. Moreover, an impaired neutrophil influx is found in an in vivo model of crystal-induced peritonitis in inflammasome-deficient mice or mice deficient in the IL-1beta receptor (IL-1R). These findings provide insight into the molecular processes underlying the inflammatory conditions of gout and pseudogout, and further support a pivotal role of the inflammasome in several autoinflammatory diseases.

4,504 citations

Journal ArticleDOI
TL;DR: The role of NLRs, and in particular the inflammasomes, in the recognition of microbial and danger components and the role they play in health and disease are discussed.
Abstract: The innate immune system relies on its capacity to rapidly detect invading pathogenic microbes as foreign and to eliminate them. The discovery of Toll-like receptors (TLRs) provided a class of membrane receptors that sense extracellular microbes and trigger antipathogen signaling cascades. More recently, intracellular microbial sensors have been identified, including NOD-like receptors (NLRs). Some of the NLRs also sense nonmicrobial danger signals and form large cytoplasmic complexes called inflammasomes that link the sensing of microbial products and metabolic stress to the proteolytic activation of the proinflammatory cytokines IL-1β and IL-18. The NALP3 inflammasome has been associated with several autoinflammatory conditions including gout. Likewise, the NALP3 inflammasome is a crucial element in the adjuvant effect of aluminum and can direct a humoral adaptive immune response. In this review, we discuss the role of NLRs, and in particular the inflammasomes, in the recognition of microbial and danger components and the role they play in health and disease.

2,217 citations

Journal ArticleDOI
01 Mar 2004-Immunity
TL;DR: It is reported that NALP2 and NalP3 associate with ASC, the CARD-containing protein Cardinal, and caspase-1 (but not casp enzyme-5), thereby forming an inflammasome with high proIL-1beta-processing activity.

1,619 citations

Journal ArticleDOI
TL;DR: Evidence is provided that activation of NALP3, but not of the IPAF inflammasome, is blocked by inhibiting K+ efflux from cells, suggesting that low intracellular K+ may be the least common trigger of NalP-inflammasomes activation.
Abstract: Inflammasomes are Nod-like receptor(NLR)- and caspase-1-containing cytoplasmic multiprotein complexes, which upon their assembly, process and activate the proinflammatory cytokines interleukin (IL)-1beta and IL-18. The inflammasomes harboring the NLR members NALP1, NALP3 and IPAF have been best characterized. While the IPAF inflammasome is activated by bacterial flagellin, activation of the NALP3 inflammasome is triggered not only by several microbial components, but also by a plethora of danger-associated host molecules such as uric acid. How NALP3 senses these chemically unrelated activators is not known. Here, we provide evidence that activation of NALP3, but not of the IPAF inflammasome, is blocked by inhibiting K(+) efflux from cells. Low intracellular K(+) is also a requirement for NALP1 inflammasome activation by lethal toxin of Bacillus anthracis. In vitro, NALP inflammasome assembly and caspase-1 recruitment occurs spontaneously at K(+) concentrations below 90 mM, but is prevented at higher concentrations. Thus, low intracellular K(+) may be the least common trigger of NALP-inflammasome activation.

1,296 citations

Journal ArticleDOI
28 May 2004-Cell
TL;DR: Mutations in one of the scaffold proteins of the inflammasome, NALP3/Cryopyrin, are associated with autoinflammatory disorders underscoring the importance of regulating inflammatory caspase activation.

942 citations


Cited by
More filters
Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: New insights into innate immunity are changing the way the way the authors think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.

10,685 citations

Journal ArticleDOI
TL;DR: Microbial recognition by Toll-like receptors helps to direct adaptive immune responses to antigens derived from microbial pathogens to distinguish infectious nonself from noninfectious self.
Abstract: ▪ Abstract The innate immune system is a universal and ancient form of host defense against infection. Innate immune recognition relies on a limited number of germline-encoded receptors. These receptors evolved to recognize conserved products of microbial metabolism produced by microbial pathogens, but not by the host. Recognition of these molecular structures allows the immune system to distinguish infectious nonself from noninfectious self. Toll-like receptors play a major role in pathogen recognition and initiation of inflammatory and immune responses. Stimulation of Toll-like receptors by microbial products leads to the activation of signaling pathways that result in the induction of antimicrobial genes and inflammatory cytokines. In addition, stimulation of Toll-like receptors triggers dendritic cell maturation and results in the induction of costimulatory molecules and increased antigen-presenting capacity. Thus, microbial recognition by Toll-like receptors helps to direct adaptive immune responses ...

8,041 citations

Journal ArticleDOI
TL;DR: Rapid progress that has recently improved the understanding of the molecular mechanisms that mediate TLR signalling is reviewed.
Abstract: One of the mechanisms by which the innate immune system senses the invasion of pathogenic microorganisms is through the Toll-like receptors (TLRs), which recognize specific molecular patterns that are present in microbial components. Stimulation of different TLRs induces distinct patterns of gene expression, which not only leads to the activation of innate immunity but also instructs the development of antigen-specific acquired immunity. Here, we review the rapid progress that has recently improved our understanding of the molecular mechanisms that mediate TLR signalling.

7,906 citations

Journal ArticleDOI
TL;DR: Recent advances that have been made by research into the role of TLR biology in host defense and disease are described.
Abstract: The discovery of Toll-like receptors (TLRs) as components that recognize conserved structures in pathogens has greatly advanced understanding of how the body senses pathogen invasion, triggers innate immune responses and primes antigen-specific adaptive immunity. Although TLRs are critical for host defense, it has become apparent that loss of negative regulation of TLR signaling, as well as recognition of self molecules by TLRs, are strongly associated with the pathogenesis of inflammatory and autoimmune diseases. Furthermore, it is now clear that the interaction between TLRs and recently identified cytosolic innate immune sensors is crucial for mounting effective immune responses. Here we describe the recent advances that have been made by research into the role of TLR biology in host defense and disease.

7,494 citations

Journal ArticleDOI
18 Oct 2001-Nature
TL;DR: It is shown that mammalian TLR3 recognizes dsRNA, and that activation of the receptor induces the activation of NF-κB and the production of type I interferons (IFNs).
Abstract: Toll-like receptors (TLRs) are a family of innate immune-recognition receptors that recognize molecular patterns associated with microbial pathogens, and induce antimicrobial immune responses. Double-stranded RNA (dsRNA) is a molecular pattern associated with viral infection, because it is produced by most viruses at some point during their replication. Here we show that mammalian TLR3 recognizes dsRNA, and that activation of the receptor induces the activation of NF-kappaB and the production of type I interferons (IFNs). TLR3-deficient (TLR3-/-) mice showed reduced responses to polyinosine-polycytidylic acid (poly(I:C)), resistance to the lethal effect of poly(I:C) when sensitized with d-galactosamine (d-GalN), and reduced production of inflammatory cytokines. MyD88 is an adaptor protein that is shared by all the known TLRs. When activated by poly(I:C), TLR3 induces cytokine production through a signalling pathway dependent on MyD88. Moreover, poly(I:C) can induce activation of NF-kappaB and mitogen-activated protein (MAP) kinases independently of MyD88, and cause dendritic cells to mature.

6,066 citations