scispace - formally typeset
Search or ask a question
Author

Fabio Muleri

Other affiliations: University of Rome Tor Vergata
Bio: Fabio Muleri is an academic researcher from INAF. The author has contributed to research in topics: Polarimetry & Physics. The author has an hindex of 27, co-authored 156 publications receiving 2810 citations. Previous affiliations of Fabio Muleri include University of Rome Tor Vergata.


Papers
More filters
Journal ArticleDOI
Marco Feroci1, Luigi Stella1, M. van der Klis2, T. J.-L. Courvoisier3  +201 moreInstitutions (41)
TL;DR: The Large Observatory For X-ray Timing (LOFT) was selected by the European Space Agency (ESA) Cosmic Vision Theme "Matter under extreme conditions", namely: does matter orbiting close to the event horizon follow the predictions of general relativity? What is the equation of state of matter in neutron stars? LOFT, selected by ESA as one of the four Cosmic Vision M3 candidate missions to undergo an assessment phase, will revolutionise the study of collapsed objects in our galaxy and of the brightest supermassive black holes in active galactic nuclei.
Abstract: High-time-resolution X-ray observations of compact objects provide direct access to strong-field gravity, to the equation of state of ultradense matter and to black hole masses and spins. A 10 m2-class instrument in combination with good spectral resolution is required to exploit the relevant diagnostics and answer two of the fundamental questions of the European Space Agency (ESA) Cosmic Vision Theme "Matter under extreme conditions", namely: does matter orbiting close to the event horizon follow the predictions of general relativity? What is the equation of state of matter in neutron stars? The Large Observatory For X-ray Timing (LOFT), selected by ESA as one of the four Cosmic Vision M3 candidate missions to undergo an assessment phase, will revolutionise the study of collapsed objects in our galaxy and of the brightest supermassive black holes in active galactic nuclei. Thanks to an innovative design and the development of large-area monolithic silicon drift detectors, the Large Area Detector (LAD) on board LOFT will achieve an effective area of ~12 m2 (more than an order of magnitude larger than any spaceborne predecessor) in the 2-30 keV range (up to 50 keV in expanded mode), yet still fits a conventional platform and small/medium-class launcher. With this large area and a spectral resolution of <260 eV, LOFT will yield unprecedented information on strongly curved spacetimes and matter under extreme conditions of pressure and magnetic field strength.

209 citations

Journal ArticleDOI
Shuang-Nan Zhang1, Andrea Santangelo2, Andrea Santangelo1, Marco Feroci3  +150 moreInstitutions (21)
TL;DR: The enhanced X-ray Timing and Polarimetry mission—eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism and will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects.
Abstract: In this paper we present the enhanced X-ray Timing and Polarimetry mission—eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring effects of QED, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, eXTP will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects. In particular, its wide field monitoring capabilities will be highly instrumental to detect the electro-magnetic counterparts of gravitational wave sources. The paper provides a detailed description of: (1) the technological and technical aspects, and the expected performance of the instruments of the scientific payload; (2) the elements and functions of the mission, from the spacecraft to the ground segment.

206 citations

Proceedings ArticleDOI
TL;DR: The Imaging X-ray Polarimetry Explorer (IXPE) as mentioned in this paper is an international collaboration for a scientific mission that dramatically brings together the unique talents of the partners to expand observation space by simultaneously adding polarization measurements to the array of source properties currently measured (energy, time, and location).
Abstract: The Imaging X-ray Polarimetry Explorer (IXPE) is an exciting international collaboration for a scientific mission that dramatically brings together the unique talents of the partners to expand observation space by simultaneously adding polarization measurements to the array of source properties currently measured (energy, time, and location). IXPE uniquely brings to the table polarimetric imaging. IXPE will thus open new dimensions for understanding how X-ray emission is produced in astrophysical objects, especially systems under extreme physical conditions-such as neutron stars and black holes. Polarization singularly probes physical anisotropies-ordered magnetic fields, aspheric matter distributions, or general relativistic coupling to black-hole spin-that are not otherwise measurable. Hence, IXPE complements all other investigations in high-energy astrophysics by adding important and relatively unexplored information to the parameter space for studying cosmic X-ray sources and processes, as well as for using extreme astrophysical environments as laboratories for fundamental physics.

201 citations

Proceedings ArticleDOI
P. Soffitta, R. Bellazzini1, Enrico Bozzo2, Vadim Burwitz  +418 moreInstitutions (132)
TL;DR: The X-ray Imaging Polarimetry Explorer (XIPE) as discussed by the authors is a mission dedicated to Xray Astronomy which is in a competitive phase A as fourth medium size mission of ESA (M4).
Abstract: XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially- resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics. Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective area larger than one XMM mirror but with a low weight. The payload is compatible with the fairing of the Vega launcher. XIPE is designed as an observatory for X-ray astronomers with 75 % of the time dedicated to a Guest Observer competitive program and it is organized as a consortium across Europe with main contributions from Italy, Germany, Spain, United Kingdom, Poland, Sweden.

185 citations

Proceedings ArticleDOI
Shuang-Nan Zhang, Marco Feroci1, Andrea Santangelo2, Yongwei Dong  +181 moreInstitutions (41)
TL;DR: eXTP as discussed by the authors is a science mission designed to study the state of matter under extreme conditions of density, gravity and magnetism, which carries a unique and unprecedented suite of state-of-the-art scientific instruments enabling for the first time ever the simultaneous spectral-timing-polarimetry studies of cosmic sources in the energy range from 0.5-30 keV.
Abstract: eXTP is a science mission designed to study the state of matter under extreme conditions of density, gravity and magnetism. Primary goals are the determination of the equation of state of matter at supra-nuclear density, the measurement of QED effects in highly magnetized star, and the study of accretion in the strong-field regime of gravity. Primary targets include isolated and binary neutron stars, strong magnetic field systems like magnetars, and stellar-mass and supermassive black holes. The mission carries a unique and unprecedented suite of state-of-the-art scientific instruments enabling for the first time ever the simultaneous spectral-timing-polarimetry studies of cosmic sources in the energy range from 0.5-30 keV (and beyond). Key elements of the payload are: the Spectroscopic Focusing Array (SFA) - a set of 11 X-ray optics for a total effective area of similar to 0.9 m(2) and 0.6 m(2) at 2 keV and 6 keV respectively, equipped with Silicon Drift Detectors offering < 180 eV spectral resolution; the Large Area Detector (LAD) - a deployable set of 640 Silicon Drift Detectors, for a total effective area of similar to 3.4 m(2), between 6 and 10 keV, and spectral resolution better than 250 eV; the Polarimetry Focusing Array (PFA) - a set of 2 X-ray telescope, for a total effective area of 250 cm(2) at 2 keV, equipped with imaging gas pixel photoelectric polarimeters; the Wide Field Monitor (WFM) - a set of 3 coded mask wide field units, equipped with position-sensitive Silicon Drift Detectors, each covering a 90 degrees x 90 degrees field of view. The eXTP international consortium includes major institutions of the Chinese Academy of Sciences and Universities in China, as well as major institutions in several European countries and the United States. The predecessor of eXTP, the XTP mission concept, has been selected and funded as one of the so-called background missions in the Strategic Priority Space Science Program of the Chinese Academy of Sciences since 2011. The strong European participation has significantly enhanced the scientific capabilities of eXTP. The planned launch date of the mission is earlier than 2025.

184 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors summarize the current knowledge of neutron-star masses and radii and show that the distribution of neutron star masses is much wider than previously thought, with three known pulsars now firmly in the 1.9-2.0-M⊙ mass range.
Abstract: We summarize our current knowledge of neutron-star masses and radii. Recent instrumentation and computational advances have resulted in a rapid increase in the discovery rate and precise timing of radio pulsars in binaries in the past few years, leading to a large number of mass measurements. These discoveries show that the neutron-star mass distribution is much wider than previously thought, with three known pulsars now firmly in the 1.9–2.0-M⊙ mass range. For radii, large, high-quality data sets from X-ray satellites as well as significant progress in theoretical modeling led to considerable progress in the measurements, placing them in the 10–11.5-km range and shrinking their uncertainties, owing to a better understanding of the sources of systematic errors. The combination of the massive-neutron-star discoveries, the tighter radius measurements, and improved laboratory constraints of the properties of dense matter has already made a substantial impact on our understanding of the composition and bulk p...

1,082 citations

Journal ArticleDOI
TL;DR: In this article, a catalog of modified theories of gravity for which strong-field predictions have been computed and contrasted to Einstein's theory is presented, and the current understanding of the structure and dynamics of compact objects in these theories is summarized.
Abstract: One century after its formulation, Einstein's general relativity (GR) has made remarkable predictions and turned out to be compatible with all experimental tests. Most of these tests probe the theory in the weak-field regime, and there are theoretical and experimental reasons to believe that GR should be modified when gravitational fields are strong and spacetime curvature is large. The best astrophysical laboratories to probe strong-field gravity are black holes and neutron stars, whether isolated or in binary systems. We review the motivations to consider extensions of GR. We present a (necessarily incomplete) catalog of modified theories of gravity for which strong-field predictions have been computed and contrasted to Einstein's theory, and we summarize our current understanding of the structure and dynamics of compact objects in these theories. We discuss current bounds on modified gravity from binary pulsar and cosmological observations, and we highlight the potential of future gravitational wave measurements to inform us on the behavior of gravity in the strong-field regime.

1,066 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize the current knowledge of neutron star masses and radii and show that the neutron star mass distribution is much wider than previously thought, with 3 known pulsars now firmly in the 1.9-2.0 Msun mass range.
Abstract: We summarize our current knowledge of neutron star masses and radii. Recent instrumentation and computational advances have resulted in a rapid increase in the discovery rate and precise timing of radio pulsars in binaries in the last few years, leading to a large number of mass measurements. These discoveries show that the neutron star mass distribution is much wider than previously thought, with 3 known pulsars now firmly in the 1.9-2.0 Msun mass range. For radii, large, high quality datasets from X-ray satellites as well as significant progress in theoretical modeling led to considerable progress in the measurements, placing them in the 9.9-11.2 km range and shrinking their uncertainties due to a better understanding of the sources of systematic errors. The combination of the massive neutron star discoveries, the tighter radius measurements, and improved laboratory constraints of the properties of dense matter has already made a substantial impact on our understanding of the composition and bulk properties of cold nuclear matter at densities higher than that of the atomic nucleus, a major unsolved problem in modern physics.

906 citations

Proceedings ArticleDOI
23 Aug 1992
TL;DR: Mes premiers remtrciements trout aux auteurs des 206 communications th6matiquts et notes de projet, sans qui ces actes n'auraient 6videmment pas vu le jour.
Abstract: Mes premiers remtrciements trout aux auteurs des 206 communications th6matiquts et notes de projet, sans qui ces actes n'auraient 6videmment pas vu le jour. / Is oat contribu6 h la qualit6 scientifique et ,5 I'hmuog6t~6it6 pr6sentationntlle de leurs articles en refondant les versions iuitiales soumises an comit6 de programme, ea acceptant de suivre les r~gles de pr6sentation indiqu6es, et en nous envoyant parrots plusieurs versions am61ior6es surun point ou sur l'autrc.

824 citations

Journal ArticleDOI
TL;DR: In this paper, the mass and equatorial radius of the millisecond pulsar PSR J0030+0451 were estimated based on a relativistic ray-tracing of thermal emission from hot regions of the pulsar surface.
Abstract: We report on Bayesian parameter estimation of the mass and equatorial radius of the millisecond pulsar PSR J0030+0451, conditional on pulse-profile modeling of Neutron Star Interior Composition Explorer X-ray spectral-timing event data. We perform relativistic ray-tracing of thermal emission from hot regions of the pulsar’s surface. We assume two distinct hot regions based on two clear pulsed components in the phase-folded pulse-profile data; we explore a number of forms (morphologies and topologies) for each hot region, inferring their parameters in addition to the stellar mass and radius. For the family of models considered, the evidence (prior predictive probability of the data) strongly favors a model that permits both hot regions to be located in the same rotational hemisphere. Models wherein both hot regions are assumed to be simply connected circular single-temperature spots, in particular those where the spots are assumed to be reflection-symmetric with respect to the stellar origin, are strongly disfavored. For the inferred configuration, one hot region subtends an angular extent of only a few degrees (in spherical coordinates with origin at the stellar center) and we are insensitive to other structural details; the second hot region is far more azimuthally extended in the form of a narrow arc, thus requiring a larger number of parameters to describe. The inferred mass M and equatorial radius R eq are, respectively, and , while the compactness is more tightly constrained; the credible interval bounds reported here are approximately the 16% and 84% quantiles in marginal posterior mass.

737 citations