scispace - formally typeset
Search or ask a question
Author

Fabio Rocca

Other affiliations: Atos, Mobil, Stanford University  ...read more
Bio: Fabio Rocca is an academic researcher from Polytechnic University of Milan. The author has contributed to research in topics: Synthetic aperture radar & Interferometric synthetic aperture radar. The author has an hindex of 57, co-authored 325 publications receiving 19186 citations. Previous affiliations of Fabio Rocca include Atos & Mobil.


Papers
More filters
Journal ArticleDOI
TL;DR: The authors present a complete procedure for the identification and exploitation of stable natural reflectors or permanent scatterers (PSs) starting from long temporal series of interferometric SAR images.
Abstract: Temporal and geometrical decorrelation often prevents SAR interferometry from being an operational tool for surface deformation monitoring and topographic profile reconstruction. Moreover, atmospheric disturbances can strongly compromise the accuracy of the results. The authors present a complete procedure for the identification and exploitation of stable natural reflectors or permanent scatterers (PSs) starting from long temporal series of interferometric SAR images. When, as it often happens, the dimension of the PS is smaller than the resolution cell, the coherence is good even for interferograms with baselines larger than the decorrelation one, and all the available images of the ESA ERS data set can be successfully exploited. On these pixels, submeter DEM accuracy and millimetric terrain motion detection can be achieved, since atmospheric phase screen (APS) contributions can be estimated and removed. Examples are then shown of small motion measurements, DEM refinement, and APS estimation and removal in the case of a sliding area in Ancona, Italy. ERS data have been used.

3,963 citations

Journal ArticleDOI
TL;DR: In this article, a new approach to the estimation of the atmospheric phase contributions, and the local displacement field is proposed based on simple statistical assumptions, is presented in order to cope with nonlinear motion of the targets.
Abstract: Discrete and temporarily stable natural reflectors or permanent scatterers (PS) can be identified from long temporal series of interferometric SAR images even with baselines larger than the so-called critical baseline. This subset of image pixels can be exploited successfully for high accuracy differential measurements. The authors discuss the use of PS in urban areas, like Pomona, CA, showing subsidence and absidence effects. A new approach to the estimation of the atmospheric phase contributions, and the local displacement field is proposed based on simple statistical assumptions. New solutions are presented in order to cope with nonlinear motion of the targets.

1,901 citations

Journal ArticleDOI
TL;DR: This paper introduces a new approach, SqueeSAR, to jointly process PS and DS, taking into account their different statistical behavior, and results on real SAR data, acquired over an Alpine area, confirm the effectiveness of this new approach.
Abstract: Permanent Scatterer SAR Interferometry (PSInSAR) aims to identify coherent radar targets exhibiting high phase stability over the entire observation time period. These targets often correspond to point-wise, man-made objects widely available over a city, but less present in non-urban areas. To overcome the limits of PSInSAR, analysis of interferometric data-stacks should aim at extracting geophysical parameters not only from point-wise deterministic objects (i.e., PS), but also from distributed scatterers (DS). Rather than developing hybrid processing chains where two or more algorithms are applied to the same data-stack, and results are then combined, in this paper we introduce a new approach, SqueeSAR, to jointly process PS and DS, taking into account their different statistical behavior. As it will be shown, PS and DS can be jointly processed without the need for significant changes to the traditional PSInSAR processing chain and without the need to unwrap hundreds of interferograms, provided that the coherence matrix associated with each DS is properly “squeezed” to provide a vector of optimum (wrapped) phase values. Results on real SAR data, acquired over an Alpine area, challenging for any InSAR analysis, confirm the effectiveness of this new approach.

1,324 citations

Proceedings ArticleDOI
TL;DR: In this paper, the authors presented results obtained using 45 ERS SAR images gathered over the Italian town of Camaiore (within a time span of more than 6 years and a range of normal baseline of over 2000 m) are presented.
Abstract: Differential SAR interferometry measurements provide a unique tool for low-cost, large-coverage surface deformations monitoring. Limitations are essentially due to temporal decorrelation and atmospheric inhomogeneities. Though temporal decorrelation and atmospheric disturbances strongly affect interferogram quality, reliable deformation measurements can be obtained in a multi-image framework on a small subset of image pixels, corresponding to stable areas. These points, hereafter called Permanent Scatterers, can be used as a `natural GPS network' to monitor terrain motion, analyzing the phase history of each one. In this paper, results obtained using 45 ERS SAR images gathered over the Italian town of Camaiore (within a time span of more than 6 years and a range of normal baseline of more than 2000 m) are presented. The area is of high geophysical interest because it is known to be unstable. A subterranean cavity collapsed in October 1995 causing the ruin of several houses in that location. Time series analysis of the phase values showed the presence of precursors three months before the collapse.© (1999) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

1,320 citations

Journal ArticleDOI
TL;DR: The authors discuss the exploitation of this spectral shift for generation of "low noise" interferogram benefiting phase unwrapping, generation of quick-look interferograms, decorrelation reduction by means of tunable SAR systems (TINSAR), 4) range resolution enhancement, and the combination of SAR data gathered by different platforms (airborne and satellite) for a "long-time coherence" study.
Abstract: SAR surveys from separate passes show relative shifts of the ground wavenumber spectra that depend on the local slope and the off-nadir angle. The authors discuss the exploitation of this spectral shift for different applications: 1) generation of "low noise" interferograms benefiting phase unwrapping, 2) generation of quick-look interferograms, 3) decorrelation reduction by means of tunable SAR systems (TINSAR), 4) range resolution enhancement, and 5) the combination of SAR data gathered by different platforms (airborne and satellite) for a "long-time coherence" study. >

718 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An efficient algorithm is proposed, which allows the computation of the ICA of a data matrix within a polynomial time and may actually be seen as an extension of the principal component analysis (PCA).

8,522 citations

Proceedings ArticleDOI
21 Jun 1994
TL;DR: A feature selection criterion that is optimal by construction because it is based on how the tracker works, and a feature monitoring method that can detect occlusions, disocclusions, and features that do not correspond to points in the world are proposed.
Abstract: No feature-based vision system can work unless good features can be identified and tracked from frame to frame. Although tracking itself is by and large a solved problem, selecting features that can be tracked well and correspond to physical points in the world is still hard. We propose a feature selection criterion that is optimal by construction because it is based on how the tracker works, and a feature monitoring method that can detect occlusions, disocclusions, and features that do not correspond to points in the world. These methods are based on a new tracking algorithm that extends previous Newton-Raphson style search methods to work under affine image transformations. We test performance with several simulations and experiments. >

8,432 citations

Journal ArticleDOI
TL;DR: The authors present a complete procedure for the identification and exploitation of stable natural reflectors or permanent scatterers (PSs) starting from long temporal series of interferometric SAR images.
Abstract: Temporal and geometrical decorrelation often prevents SAR interferometry from being an operational tool for surface deformation monitoring and topographic profile reconstruction. Moreover, atmospheric disturbances can strongly compromise the accuracy of the results. The authors present a complete procedure for the identification and exploitation of stable natural reflectors or permanent scatterers (PSs) starting from long temporal series of interferometric SAR images. When, as it often happens, the dimension of the PS is smaller than the resolution cell, the coherence is good even for interferograms with baselines larger than the decorrelation one, and all the available images of the ESA ERS data set can be successfully exploited. On these pixels, submeter DEM accuracy and millimetric terrain motion detection can be achieved, since atmospheric phase screen (APS) contributions can be estimated and removed. Examples are then shown of small motion measurements, DEM refinement, and APS estimation and removal in the case of a sliding area in Ancona, Italy. ERS data have been used.

3,963 citations

Journal ArticleDOI
TL;DR: Results obtained on the data acquired from 1992 to 2000 by the European Remote Sensing satellites and relative to the Campi Flegrei caldera and to the city of Naples, Italy, that demonstrate the capability of the proposed approach to follow the dynamics of the detected deformations.
Abstract: We present a new differential synthetic aperture radar (SAR) interferometry algorithm for monitoring the temporal evolution of surface deformations. The presented technique is based on an appropriate combination of differential interferograms produced by data pairs characterized by a small orbital separation (baseline) in order to limit the spatial decorrelation phenomena. The application of the singular value decomposition method allows us to easily "link" independent SAR acquisition datasets, separated by large baselines, thus increasing the observation temporal sampling rate. The availability of both spatial and temporal information in the processed data is used to identify and filter out atmospheric phase artifacts. We present results obtained on the data acquired from 1992 to 2000 by the European Remote Sensing satellites and relative to the Campi Flegrei caldera and to the city of Naples, Italy, that demonstrate the capability of the proposed approach to follow the dynamics of the detected deformations.

3,522 citations

Journal ArticleDOI
01 Mar 2000
TL;DR: In this paper, the authors present a review of the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering, including cartography, geodesy, land cover characterization, and natural hazards.
Abstract: Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristic of the surface. By exploiting the phase of the coherent radar signal, interferometry has transformed radar remote sensing from a largely interpretive science to a quantitative tool, with applications in cartography, geodesy, land cover characterization, and natural hazards. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

3,042 citations