scispace - formally typeset
Search or ask a question
Author

Fabio Vesperini

Bio: Fabio Vesperini is an academic researcher from Marche Polytechnic University. The author has contributed to research in topics: Artificial neural network & Convolutional neural network. The author has an hindex of 9, co-authored 20 publications receiving 527 citations.

Papers
More filters
Proceedings ArticleDOI
19 Apr 2015
TL;DR: This paper presents a novel unsupervised approach based on a denoising autoencoder which significantly outperforms existing methods by achieving up to 93.4% F-Measure.
Abstract: Acoustic novelty detection aims at identifying abnormal/novel acoustic signals which differ from the reference/normal data that the system was trained with. In this paper we present a novel unsupervised approach based on a denoising autoencoder. In our approach auditory spectral features are processed by a denoising autoencoder with bidirectional Long Short-Term Memory recurrent neural networks. We use the reconstruction error between the input and the output of the autoencoder as activation signal to detect novel events. The autoencoder is trained on a public database which contains recordings of typical in-home situations such as talking, watching television, playing and eating. The evaluation was performed on more than 260 different abnormal events. We compare results with state-of-theart methods and we conclude that our novel approach significantly outperforms existing methods by achieving up to 93.4% F-Measure.

210 citations

Journal ArticleDOI
TL;DR: How RNN-based autoencoders outperform statistical approaches up to an absolute improvement of 16.4% average F-measure over the three databases is shown.
Abstract: In the emerging field of acoustic novelty detection, most research efforts are devoted to probabilistic approaches such as mixture models or state-space models. Only recent studies introduced (pseudo-)generative models for acoustic novelty detection with recurrent neural networks in the form of an autoencoder. In these approaches, auditory spectral features of the next short term frame are predicted from the previous frames by means of Long-Short Term Memory recurrent denoising autoencoders. The reconstruction error between the input and the output of the autoencoder is used as activation signal to detect novel events. There is no evidence of studies focused on comparing previous efforts to automatically recognize novel events from audio signals and giving a broad and in depth evaluation of recurrent neural network-based autoencoders. The present contribution aims to consistently evaluate our recent novel approaches to fill this white spot in the literature and provide insight by extensive evaluations carried out on three databases: A3Novelty, PASCAL CHiME, and PROMETHEUS. Besides providing an extensive analysis of novel and state-of-the-art methods, the article shows how RNN-based autoencoders outperform statistical approaches up to an absolute improvement of 16.4% average F-measure over the three databases.

80 citations

Proceedings ArticleDOI
12 Jul 2015
TL;DR: In this paper, auditory spectral features of the next short-term frame are predicted from the previous frames by means of Long-Short Term Memory (LSTM) recurrent denoising autoencoders, which yields an effective generative model for audio.
Abstract: Acoustic novelty detection aims at identifying abnormal/novel acoustic signals which differ from the reference/normal data that the system was trained with. In this paper we present a novel approach based on non-linear predictive denoising autoencoders. In our approach, auditory spectral features of the next short-term frame are predicted from the previous frames by means of Long-Short Term Memory (LSTM) recurrent denoising autoencoders. We show that this yields an effective generative model for audio. The reconstruction error between the input and the output of the autoencoder is used as activation signal to detect novel events. The autoencoder is trained on a public database which contains recordings of typical in-home situations such as talking, watching television, playing and eating. The evaluation was performed on more than 260 different abnormal events. We compare results with state-of-the-art methods and we conclude that our novel approach significantly outperforms existing methods by achieving up to 94.4% F-Measure.

80 citations

Proceedings ArticleDOI
01 Sep 2016
TL;DR: A Speaker Localization algorithm based on Neural Networks for multi-room domestic scenarios is proposed and outperforms the reference one, providing an average localization error, expressed in terms of RMSE, equal to 525 mm against 1465 mm.
Abstract: A Speaker Localization algorithm based on Neural Networks for multi-room domestic scenarios is proposed in this paper. The approach is fully data-driven and employs a Neural Network fed by GCC-PHAT (Generalized Cross Correlation Phase Transform) Patterns, calculated by means of the microphone signals, to determine the speaker position in the room under analysis. In particular, we deal with a multi-room case study, in which the acoustic scene of each room is influenced by sounds emitted in the other rooms. The algorithm is tested against the home recorded DIRHA dataset, characterized by multiple wall and ceiling microphone signals for each room. In particular, we focused on the speaker localization problem in two distinct neighbouring rooms. We assumed the presence of an Oracle multi-room Voice Activity Detector (VAD) in our experiments. A three-stage optimization procedure has been adopted to find the best network configuration and GCC-PHAT Patterns combination. Moreover, an algorithm based on Time Difference of Arrival (TDOA), recently proposed in literature for the addressed applicative context, has been considered as term of comparison. As result, the proposed algorithm outperforms the reference one, providing an average localization error, expressed in terms of RMSE, equal to 525 mm against 1465 mm. Concluding, we also assessed the algorithm performance when a real VAD, recently proposed by some of the authors, is used. Even though a degradation of localization capability is registered (an average RMSE equal to 770 mm), still a remarkable improvement with respect to the state of the art performance is obtained.

66 citations

Proceedings ArticleDOI
14 May 2017
TL;DR: The presented approach showed promising results on this task and it could be extended as a general training strategy for autoencoders if confirmed by additional experiments.
Abstract: Novelty detection is the task of recognising events the differ from a model of normality. This paper proposes an acoustic novelty detector based on neural networks trained with an adversarial training strategy. The proposed approach is composed of a feature extraction stage that calculates Log-Mel spectral features from the input signal. Then, an autoencoder network, trained on a corpus of “normal” acoustic signals, is employed to detect whether a segment contains an abnormal event or not. A novelty is detected if the Euclidean distance between the input and the output of the autoencoder exceeds a certain threshold. The innovative contribution of the proposed approach resides in the training procedure of the autoencoder network: instead of using the conventional training procedure that minimises only the Minimum Mean Squared Error loss function, here we adopt an adversarial strategy, where a discriminator network is trained to distinguish between the output of the autoencoder and data sampled from the training corpus. The autoencoder, then, is trained also by using the binary cross-entropy loss calculated at the output of the discriminator network. The performance of the algorithm has been assessed on a corpus derived from the PASCAL CHiME dataset. The results showed that the proposed approach provides a relative performance improvement equal to 0.26% compared to the standard autoencoder. The significance of the improvement has been evaluated with a one-tailed z-test and resulted significant with p < 0.001. The presented approach thus showed promising results on this task and it could be extended as a general training strategy for autoencoders if confirmed by additional experiments.

55 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive survey of deep anomaly detection with a comprehensive taxonomy is presented in this paper, covering advancements in 3 high-level categories and 11 fine-grained categories of the methods.
Abstract: Anomaly detection, a.k.a. outlier detection or novelty detection, has been a lasting yet active research area in various research communities for several decades. There are still some unique problem complexities and challenges that require advanced approaches. In recent years, deep learning enabled anomaly detection, i.e., deep anomaly detection, has emerged as a critical direction. This article surveys the research of deep anomaly detection with a comprehensive taxonomy, covering advancements in 3 high-level categories and 11 fine-grained categories of the methods. We review their key intuitions, objective functions, underlying assumptions, advantages, and disadvantages and discuss how they address the aforementioned challenges. We further discuss a set of possible future opportunities and new perspectives on addressing the challenges.

560 citations

Posted Content
TL;DR: A structured and comprehensive overview of research methods in deep learning-based anomaly detection, grouped state-of-the-art research techniques into different categories based on the underlying assumptions and approach adopted.
Abstract: Anomaly detection is an important problem that has been well-studied within diverse research areas and application domains. The aim of this survey is two-fold, firstly we present a structured and comprehensive overview of research methods in deep learning-based anomaly detection. Furthermore, we review the adoption of these methods for anomaly across various application domains and assess their effectiveness. We have grouped state-of-the-art research techniques into different categories based on the underlying assumptions and approach adopted. Within each category we outline the basic anomaly detection technique, along with its variants and present key assumptions, to differentiate between normal and anomalous behavior. For each category, we present we also present the advantages and limitations and discuss the computational complexity of the techniques in real application domains. Finally, we outline open issues in research and challenges faced while adopting these techniques.

522 citations

Journal ArticleDOI
02 Feb 2018
TL;DR: In this paper, a long short-term memory-based variational autoencoder (LSTM-VAE) was proposed for anomaly detection in assistive manipulation.
Abstract: The detection of anomalous executions is valuable for reducing potential hazards in assistive manipulation. Multimodal sensory signals can be helpful for detecting a wide range of anomalies. However, the fusion of high-dimensional and heterogeneous modalities is a challenging problem for model-based anomaly detection. We introduce a long short-term memory-based variational autoencoder (LSTM-VAE) that fuses signals and reconstructs their expected distribution by introducing a progress-based varying prior. Our LSTM-VAE-based detector reports an anomaly when a reconstruction-based anomaly score is higher than a state-based threshold. For evaluations with 1555 robot-assisted feeding executions, including 12 representative types of anomalies, our detector had a higher area under the receiver operating characteristic curve of 0.8710 than 5 other baseline detectors from the literature. We also show the variational autoencoding and state-based thresholding are effective in detecting anomalies from 17 raw sensory signals without significant feature engineering effort.

455 citations

Journal ArticleDOI
TL;DR: Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross fertilization between areas.
Abstract: Given the recent surge in developments of deep learning, this paper provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e., audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.

445 citations

Journal ArticleDOI
TL;DR: This article surveys the research of deep anomaly detection with a comprehensive taxonomy, covering advancements in 3 high-level categories and 11 fine-grained categories of the methods and discusses how they address the aforementioned challenges.
Abstract: Anomaly detection, a.k.a. outlier detection, has been a lasting yet active research area in various research communities for several decades. There are still some unique problem complexities and challenges that require advanced approaches. In recent years, deep learning enabled anomaly detection, i.e., deep anomaly detection, has emerged as a critical direction. This paper reviews the research of deep anomaly detection with a comprehensive taxonomy of detection methods, covering advancements in three high-level categories and 11 fine-grained categories of the methods. We review their key intuitions, objective functions, underlying assumptions, advantages and disadvantages, and discuss how they address the aforementioned challenges. We further discuss a set of possible future opportunities and new perspectives on addressing the challenges.

385 citations