scispace - formally typeset
Search or ask a question
Author

Fabrice Ardhuin

Bio: Fabrice Ardhuin is an academic researcher from IFREMER. The author has contributed to research in topics: Wind wave & Swell. The author has an hindex of 54, co-authored 241 publications receiving 10267 citations. Previous affiliations of Fabrice Ardhuin include Centre national de la recherche scientifique & University of California, San Diego.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the spectral dissipation of wind-generated waves is modeled as a function of the wave spectrum and wind speed and direction, in a way consistent with observations of wave breaking and swell dissipation properties.
Abstract: New parameterizations for the spectral dissipation of wind-generated waves are proposed. The rates of dissipation have no predetermined spectral shapes and are functions of the wave spectrum and wind speed and direction, in a way consistent with observations of wave breaking and swell dissipation properties. Namely, the swell dissipation is nonlinear and proportional to the swell steepness, and dissipation due to wave breaking is nonzero only when a nondimensional spectrum exceeds the threshold at which waves are observed to start breaking. An additional source of short-wave dissipation is introduced to represent the dissipation of short waves due to longer breaking waves. A reduction of the wind-wave generation of short waves is meant to account for the momentum flux absorbed by longer waves. These parameterizations are combined and calibrated with the discrete interaction approximation for the nonlinear interactions. Parameters are adjusted to reproduce observed shapes of directional wave spect...

709 citations

Journal ArticleDOI
TL;DR: In this paper, the wave energy balance is verified in a wide range of conditions and scales, from gentle swells to major hurricanes, from the global ocean to coastal settings using in situ and remote sensing data.
Abstract: New parameterizations for the spectra dissipation of wind-generated waves are proposed. The rates of dissipation have no predetermined spectral shapes and are functions of the wave spectrum and wind speed and direction, in a way consistent with observation of wave breaking and swell dissipation properties. Namely, the swell dissipation is nonlinear and proportional to the swell steepness, and dissipation due to wave breaking is non-zero only when a non-dimensional spectrum exceeds the threshold at which waves are observed to start breaking. An additional source of short wave dissipation due to long wave breaking is introduced to represent the dissipation of short waves due to longer breaking waves. Several degrees of freedom are introduced in the wave breaking and the wind-wave generation term of Janssen (J. Phys. Oceanogr. 1991). These parameterizations are combined and calibrated with the Discrete Interaction Approximation of Hasselmann et al. (J. Phys. Oceangr. 1985) for the nonlinear interactions. Parameters are adjusted to reproduce observed shapes of directional wave spectra, and the variability of spectral moments with wind speed and wave height. The wave energy balance is verified in a wide range of conditions and scales, from gentle swells to major hurricanes, from the global ocean to coastal settings. Wave height, peak and mean periods, and spectral data are validated using in situ and remote sensing data. Some systematic defects are still present, but the parameterizations yield the best overall results to date. Perspectives for further improvement are also given.

420 citations

Journal ArticleDOI
TL;DR: Ardhuin et al. as discussed by the authors presented a multi-scale global hindcast of ocean waves that covers the years 1994-2012, based on recently published parameterizations for wind sea and swell dissipation.

332 citations


Cited by
More filters
Journal Article
TL;DR: In this paper, a documento: "Cambiamenti climatici 2007: impatti, adattamento e vulnerabilita" voteato ad aprile 2007 dal secondo gruppo di lavoro del Comitato Intergovernativo sui Cambiamentsi Climatici (Intergovernmental Panel on Climate Change).
Abstract: Impatti, adattamento e vulnerabilita Le cause e le responsabilita dei cambiamenti climatici sono state trattate sul numero di ottobre della rivista Cda. Approfondiamo l’argomento presentando il documento: “Cambiamenti climatici 2007: impatti, adattamento e vulnerabilita” votato ad aprile 2007 dal secondo gruppo di lavoro del Comitato Intergovernativo sui Cambiamenti Climatici (Intergovernmental Panel on Climate Change). Si tratta del secondo di tre documenti che compongono il quarto rapporto sui cambiamenti climatici.

3,979 citations

Journal ArticleDOI
20 May 2005-Science
TL;DR: Tsunami and geodetic observations indicate that additional slow slip occurred in the north over a time scale of 50 minutes or longer, and fault slip of up to 15 meters occurred near Banda Aceh, Sumatra, but to the north, along the Nicobar and Andaman Islands, rapid slip was much smaller.
Abstract: The two largest earthquakes of the past 40 years ruptured a 1600-kilometer-long portion of the fault boundary between the Indo-Australian and southeastern Eurasian plates on 26 December 2004 [seismic moment magnitude (Mw) = 9.1 to 9.3] and 28 March 2005 (Mw = 8.6). The first event generated a tsunami that caused more than 283,000 deaths. Fault slip of up to 15 meters occurred near Banda Aceh, Sumatra, but to the north, along the Nicobar and Andaman Islands, rapid slip was much smaller. Tsunami and geodetic observations indicate that additional slow slip occurred in the north over a time scale of 50 minutes or longer.

1,030 citations

Book
01 Feb 2010
TL;DR: The SWAN wave model as discussed by the authors is a wave model based on linear wave theory (SWAN) for oceanic and coastal waters, and it has been shown to be effective in detecting ocean waves.
Abstract: 1. Introduction 2. Observation techniques 3. Description of ocean waves 4. Statistics 5. Linear wave theory (oceanic waters) 6. Waves in oceanic waters 7. Linear wave theory (coastal waters) 8. Waves in coastal waters 9. The SWAN wave model Appendices References Index.

874 citations

01 Jan 2010
TL;DR: A 23-year database of calibrated and validated satellite altimeter measurements is used to investigate global changes in oceanic wind speed and wave height over this period and finds a general global trend of increasing values of windspeed and, to a lesser degree, wave height.
Abstract: Wind speeds over the world’s oceans have increased over the past two decades, as have wave heights. Studies of climate change typically consider measurements or predictions of temperature over extended periods of time. Climate, however, is much more than temperature. Over the oceans, changes in wind speed and the surface gravity waves generated by such winds play an important role. We used a 23-year database of calibrated and validated satellite altimeter measurements to investigate global changes in oceanic wind speed and wave height over this period. We find a general global trend of increasing values of wind speed and, to a lesser degree, wave height, over this period. The rate of increase is greater for extreme events as compared to the mean condition.

737 citations