scispace - formally typeset
Search or ask a question
Author

Fabrice Crivello

Bio: Fabrice Crivello is an academic researcher from University of Bordeaux. The author has contributed to research in topics: Population & Planum temporale. The author has an hindex of 50, co-authored 118 publications receiving 22392 citations. Previous affiliations of Fabrice Crivello include Centre national de la recherche scientifique & Paris Descartes University.


Papers
More filters
Journal ArticleDOI
TL;DR: An anatomical parcellation of the spatially normalized single-subject high-resolution T1 volume provided by the Montreal Neurological Institute was performed and it is believed that this tool is an improvement for the macroscopical labeling of activated area compared to labeling assessed using the Talairach atlas brain.

13,678 citations

Journal ArticleDOI
TL;DR: A large-scale meta-analysis of language literature sheds light on the fine-scale functional architecture of the inferior frontal gyrus for phonological and semantic processing, the evidence for an elementary audio-motor loop involved in both comprehension and production of syllables, and the hypothesis that different working memory perception-actions loops are identifiable for the different language components.

1,596 citations

Journal ArticleDOI
TL;DR: The results suggest that brain activity during conscious REST is sustained by a large scale network of heteromodal associative parietal and frontal cortical areas, that can be further hierarchically organized in an episodic working memory parieto-frontal network, driven in part by emotions.

893 citations

Journal ArticleDOI
TL;DR: The results confirm the suitability of the dual route framework to account for activations observed in nonpathological subjects while they read and indicated the existence of brain regions predominantly involved in one of the two routes to access word.

809 citations

Journal ArticleDOI
TL;DR: In this paper, the functional anatomy of mental simulation of routes (MSR) was investigated in five normal volunteers, and normalized regional cerebral blood flow was measured while subjects mentally navigated between landmarks of a route which had been previously learned by actual navigation.
Abstract: Positron emission tomography was used to investigate the functional anatomy of mental simulation of routes (MSR) in five normal volunteers. Normalized regional cerebral blood flow was measured while subjects mentally navigated between landmarks of a route which had been previously learned by actual navigation. This task was contrasted with both static visual imagery of landmarks (VIL) and silent Rest. MSR appears to be subserved by two distinct networks: a non-specific memory network including the posterior and middle parts of the hippocampal regions, the dorsolateral prefrontal cortex and the posterior cingulum, and a specific mental navigation network, comprising the left precuneus, insula and medial part of the hippocampal regions.

424 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An anatomical parcellation of the spatially normalized single-subject high-resolution T1 volume provided by the Montreal Neurological Institute was performed and it is believed that this tool is an improvement for the macroscopical labeling of activated area compared to labeling assessed using the Talairach atlas brain.

13,678 citations

Journal ArticleDOI
TL;DR: An automated labeling system for subdividing the human cerebral cortex into standard gyral-based neuroanatomical regions is both anatomically valid and reliable and may be useful for both morphometric and functional studies of the cerebral cortex.

9,940 citations

Journal ArticleDOI
TL;DR: Past observations are synthesized to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment, and for understanding mental disorders including autism, schizophrenia, and Alzheimer's disease.
Abstract: Thirty years of brain imaging research has converged to define the brain’s default network—a novel and only recently appreciated brain system that participates in internal modes of cognition Here we synthesize past observations to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment Analysis of connectional anatomy in the monkey supports the presence of an interconnected brain system Providing insight into function, the default network is active when individuals are engaged in internally focused tasks including autobiographical memory retrieval, envisioning the future, and conceiving the perspectives of others Probing the functional anatomy of the network in detail reveals that it is best understood as multiple interacting subsystems The medial temporal lobe subsystem provides information from prior experiences in the form of memories and associations that are the building blocks of mental simulation The medial prefrontal subsystem facilitates the flexible use of this information during the construction of self-relevant mental simulations These two subsystems converge on important nodes of integration including the posterior cingulate cortex The implications of these functional and anatomical observations are discussed in relation to possible adaptive roles of the default network for using past experiences to plan for the future, navigate social interactions, and maximize the utility of moments when we are not otherwise engaged by the external world We conclude by discussing the relevance of the default network for understanding mental disorders including autism, schizophrenia, and Alzheimer’s disease

8,448 citations

Journal ArticleDOI
TL;DR: It is suggested that both task-driven neuronal responses and behavior are reflections of this dynamic, ongoing, functional organization of the brain, featuring the presence of anticorrelated networks in the absence of overt task performance.
Abstract: During performance of attention-demanding cognitive tasks, certain regions of the brain routinely increase activity, whereas others routinely decrease activity. In this study, we investigate the extent to which this task-related dichotomy is represented intrinsically in the resting human brain through examination of spontaneous fluctuations in the functional MRI blood oxygen level-dependent signal. We identify two diametrically opposed, widely distributed brain networks on the basis of both spontaneous correlations within each network and anticorrelations between networks. One network consists of regions routinely exhibiting task-related activations and the other of regions routinely exhibiting task-related deactivations. This intrinsic organization, featuring the presence of anticorrelated networks in the absence of overt task performance, provides a critical context in which to understand brain function. We suggest that both task-driven neuronal responses and behavior are reflections of this dynamic, ongoing, functional organization of the brain.

7,741 citations