scispace - formally typeset
Search or ask a question
Author

Fahim Kawsar

Other affiliations: Waseda University, Delft University of Technology, iMinds  ...read more
Bio: Fahim Kawsar is an academic researcher from Bell Labs. The author has contributed to research in topics: Computer science & Wearable computer. The author has an hindex of 27, co-authored 187 publications receiving 4338 citations. Previous affiliations of Fahim Kawsar include Waseda University & Delft University of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: The authors introduce a hierarchy of architectures with increasing levels of real-world awareness and interactivity for smart objects, describing activity-, policy-, and process-aware smart objects and demonstrating how the respective architectural abstractions support increasingly complex application.
Abstract: The combination of the Internet and emerging technologies such as nearfield communications, real-time localization, and embedded sensors lets us transform everyday objects into smart objects that can understand and react to their environment. Such objects are building blocks for the Internet of Things and enable novel computing applications. As a step toward design and architectural principles for smart objects, the authors introduce a hierarchy of architectures with increasing levels of real-world awareness and interactivity. In particular, they describe activity-, policy-, and process-aware smart objects and demonstrate how the respective architectural abstractions support increasingly complex application.

1,459 citations

Proceedings ArticleDOI
11 Apr 2016
TL;DR: Experiments show, DeepX can allow even large-scale deep learning models to execute efficently on modern mobile processors and significantly outperform existing solutions, such as cloud-based offloading.
Abstract: Breakthroughs from the field of deep learning are radically changing how sensor data are interpreted to extract the high-level information needed by mobile apps. It is critical that the gains in inference accuracy that deep models afford become embedded in future generations of mobile apps. In this work, we present the design and implementation of DeepX, a software accelerator for deep learning execution. DeepX signif- icantly lowers the device resources (viz. memory, computation, energy) required by deep learning that currently act as a severe bottleneck to mobile adoption. The foundation of DeepX is a pair of resource control algorithms, designed for the inference stage of deep learning, that: (1) decompose monolithic deep model network architectures into unit- blocks of various types, that are then more efficiently executed by heterogeneous local device processors (e.g., GPUs, CPUs); and (2), perform principled resource scaling that adjusts the architecture of deep models to shape the overhead each unit-blocks introduces. Experiments show, DeepX can allow even large-scale deep learning models to execute efficently on modern mobile processors and significantly outperform existing solutions, such as cloud-based offloading.

442 citations

Journal ArticleDOI
TL;DR: A wide range of researchers from academia and industry, as well as businesses, government agencies, and cities, are exploring the technologies comprising the Internet of Things from three main perspectives: scientific theory, engineering design, and the user experience.
Abstract: A wide range of researchers from academia and industry, as well as businesses, government agencies, and cities, are exploring the technologies comprising the Internet of Things from three main perspectives: scientific theory, engineering design, and the user experience.

238 citations

Journal ArticleDOI
08 Jan 2018
TL;DR: This paper studies the benefits of adopting deep learning algorithms for interpreting user activity and context as captured by multi-sensor systems under wearable data by evaluating four variations of deep neural networks based either on fully-connected Deep Neural Networks (DNNs) or Convolutional Neural networks (CNNs).
Abstract: Wearables and mobile devices see the world through the lens of half a dozen low-power sensors, such as, barometers, accelerometers, microphones and proximity detectors. But differences between sensors ranging from sampling rates, discrete and continuous data or even the data type itself make principled approaches to integrating these streams challenging. How, for example, is barometric pressure best combined with an audio sample to infer if a user is in a car, plane or bike? Critically for applications, how successfully sensor devices are able to maximize the information contained across these multi-modal sensor streams often dictates the fidelity at which they can track user behaviors and context changes. This paper studies the benefits of adopting deep learning algorithms for interpreting user activity and context as captured by multi-sensor systems. Specifically, we focus on four variations of deep neural networks that are based either on fully-connected Deep Neural Networks (DNNs) or Convolutional Neural Networks (CNNs). Two of these architectures follow conventional deep models by performing feature representation learning from a concatenation of sensor types. This classic approach is contrasted with a promising deep model variant characterized by modality-specific partitions of the architecture to maximize intra-modality learning. Our exploration represents the first time these architectures have been evaluated for multimodal deep learning under wearable data -- and for convolutional layers within this architecture, it represents a novel architecture entirely. Experiments show these generic multimodal neural network models compete well with a rich variety of conventional hand-designed shallow methods (including feature extraction and classifier construction) and task-specific modeling pipelines, across a wide-range of sensor types and inference tasks (four different datasets). Although the training and inference overhead of these multimodal deep approaches is in some cases appreciable, we also demonstrate the feasibility of on-device mobile and wearable execution is not a barrier to adoption. This study is carefully constructed to focus on multimodal aspects of wearable data modeling for deep learning by providing a wide range of empirical observations, which we expect to have considerable value in the community. We summarize our observations into a series of practitioner rules-of-thumb and lessons learned that can guide the usage of multimodal deep learning for activity and context detection.

217 citations

Proceedings ArticleDOI
01 Nov 2015
TL;DR: The aim of this investigation is to begin to build knowledge of the performance characteristics, resource requirements and the execution bottlenecks for deep learning models when being used to recognize categories of behavior and context.
Abstract: Detecting and reacting to user behavior and ambient context are core elements of many emerging mobile sensing and Internet-of-Things (IoT) applications. However, extracting accurate inferences from raw sensor data is challenging within the noisy and complex environments where these systems are deployed. Deep Learning -- is one of the most promising approaches for overcoming this challenge, and achieving more robust and reliable inference. Techniques developed within this rapidly evolving area of machine learning are now state-of-the-art for many inference tasks (such as, audio sensing and computer vision) commonly needed by IoT and wearable applications. But currently deep learning algorithms are seldom used in mobile/IoT class hardware because they often impose debilitating levels of system overhead (e.g., memory, computation and energy). Efforts to address this barrier to deep learning adoption are slowed by our lack of a systematic understanding of how these algorithms behave at inference time on resource constrained hardware. In this paper, we present the first -- albeit preliminary -- measurement study of common deep learning models (such as Convolutional Neural Networks and Deep Neural Networks) on representative mobile and embedded platforms. The aim of this investigation is to begin to build knowledge of the performance characteristics, resource requirements and the execution bottlenecks for deep learning models when being used to recognize categories of behavior and context. The results and insights of this study, lay an empirical foundation for the development of optimization methods and execution environments that enable deep learning to be more readily integrated into next-generation IoT, smartphones and wearable systems.

209 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: This review paper summarizes the current state-of-the-art IoT in industries systematically and identifies research trends and challenges.
Abstract: Internet of Things (IoT) has provided a promising opportunity to build powerful industrial systems and applications by leveraging the growing ubiquity of radio-frequency identification (RFID), and wireless, mobile, and sensor devices. A wide range of industrial IoT applications have been developed and deployed in recent years. In an effort to understand the development of IoT in industries, this paper reviews the current research of IoT, key enabling technologies, major IoT applications in industries, and identifies research trends and challenges. A main contribution of this review paper is that it summarizes the current state-of-the-art IoT in industries systematically.

4,145 citations

Journal ArticleDOI
01 Sep 2012
TL;DR: A survey of technologies, applications and research challenges for Internetof-Things is presented, in which digital and physical entities can be linked by means of appropriate information and communication technologies to enable a whole new class of applications and services.
Abstract: The term ‘‘Internet-of-Things’’ is used as an umbrella keyword for covering various aspects related to the extension of the Internet and the Web into the physical realm, by means of the widespread deployment of spatially distributed devices with embedded identification, sensing and/or actuation capabilities. Internet-of-Things envisions a future in which digital and physical entities can be linked, by means of appropriate information and communication technologies, to enable a whole new class of applications and services. In this article, we present a survey of technologies, applications and research challenges for Internetof-Things.

3,172 citations

Journal ArticleDOI
TL;DR: This paper surveys context awareness from an IoT perspective and addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT.
Abstract: As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.

2,542 citations