scispace - formally typeset
Search or ask a question
Author

Fahimeh Farahnakian

Bio: Fahimeh Farahnakian is an academic researcher from University of Turku. The author has contributed to research in topics: Object detection & Cloud computing. The author has an hindex of 15, co-authored 39 publications receiving 1185 citations. Previous affiliations of Fahimeh Farahnakian include Information Technology University & Iran University of Science and Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: The proposed ACS-based VM Consolidation (ACS-VMC) approach finds a near-optimal solution based on a specified objective function and outperforms existing VM consolidation approaches in terms of energy consumption, number of VM migrations, and QoS requirements concerning performance.
Abstract: High energy consumption of cloud data centers is a matter of great concern. Dynamic consolidation of Virtual Machines (VMs) presents a significant opportunity to save energy in data centers. A VM consolidation approach uses live migration of VMs so that some of the under-loaded Physical Machines (PMs) can be switched-off or put into a low-power mode. On the other hand, achieving the desired level of Quality of Service (QoS) between cloud providers and their users is critical. Therefore, the main challenge is to reduce energy consumption of data centers while satisfying QoS requirements. In this paper, we present a distributed system architecture to perform dynamic VM consolidation to reduce energy consumption of cloud data centers while maintaining the desired QoS. Since the VM consolidation problem is strictly NP-hard, we use an online optimization metaheuristic algorithm called Ant Colony System (ACS). The proposed ACS-based VM Consolidation (ACS-VMC) approach finds a near-optimal solution based on a specified objective function. Experimental results on real workload traces show that ACS-VMC reduces energy consumption while maintaining the required performance levels in a cloud data center. It outperforms existing VM consolidation approaches in terms of energy consumption, number of VM migrations, and QoS requirements concerning performance.

281 citations

Proceedings ArticleDOI
04 Sep 2013
TL;DR: Experimental results on the real workload traces from more than a thousand Planet Lab VMs show that the proposed technique can significantly reduce the energy consumption and SLA violation rates.
Abstract: Virtualization is a vital technology of cloud computing which enables the partition of a physical host into several Virtual Machines (VMs). The number of active hosts can be reduced according to the resources requirements using live migration in order to minimize the power consumption in this technology. However, the Service Level Agreement (SLA) is essential for maintaining reliable quality of service between data centers and their users in the cloud environment. Therefore, reduction of the SLA violation level and power costs are considered as two objectives in this paper. We present a CPU usage prediction method based on the linear regression technique. The proposed approach approximates the short-time future CPU utilization based on the history of usage in each host. It is employed in the live migration process to predict over-loaded and under-loaded hosts. When a host becomes over-loaded, some VMs migrate to other hosts to avoid SLA violation. Moreover, first all VMs migrate from a host while it becomes under-loaded. Then, the host switches to the sleep mode for reducing power consumption. Experimental results on the real workload traces from more than a thousand Planet Lab VMs show that the proposed technique can significantly reduce the energy consumption and SLA violation rates.

156 citations

Proceedings ArticleDOI
01 Feb 2018
TL;DR: The proposed DAE model is trained in a greedy layer-wise fashion in order to avoid overfitting and local optima, and provides substantial improvement over other deep learning-based approaches in terms of accuracy, detection rate and false alarm rate.
Abstract: One of the most challenging problems facing network operators today is network attacks identification due to extensive number of vulnerabilities in computer systems and creativity of attackers. To address this problem, we present a deep learning approach for intrusion detection systems. Our approach uses Deep Auto-Encoder (DAE) as one of the most well-known deep learning models. The proposed DAE model is trained in a greedy layer-wise fashion in order to avoid overfitting and local optima. The experimental results on the KDD-CUP'99 dataset show that our approach provides substantial improvement over other deep learning-based approaches in terms of accuracy, detection rate and false alarm rate.

146 citations

Proceedings ArticleDOI
12 Feb 2014
TL;DR: Experimental results on the real workload traces from more than a thousand PlanetLab virtual machines show that RL-DC minimizes energy consumption and maintains required performance levels.
Abstract: Dynamic consolidation techniques optimize resource utilization and reduce energy consumption in Cloud data centers. They should consider the variability of the workload to decide when idle or underutilized hosts switch to sleep mode in order to minimize energy consumption. In this paper, we propose a Reinforcement Learning-based Dynamic Consolidation method (RL-DC) to minimize the number of active hosts according to the current resources requirement. The RL-DC utilizes an agent to learn the optimal policy for determining the host power mode by using a popular reinforcement learning method. The agent learns from past knowledge to decide when a host should be switched to the sleep or active mode and improves itself as the workload changes. Therefore, RL-DC does not require any prior information about workload and it dynamically adapts to the environment to achieve online energy and performance management. Experimental results on the real workload traces from more than a thousand PlanetLab virtual machines show that RL-DC minimizes energy consumption and maintains required performance levels.

140 citations

Journal ArticleDOI
TL;DR: The experimental results show, the proposed VM consolidation approach uses a regression-based model to approximate the future CPU and memory utilization of VMs and PMs provides substantial improvement over other heuristic and meta-heuristic algorithms in reducing the energy consumption, the number of VM migrations and thenumber of SLA violations.
Abstract: Virtual Machine (VM) consolidation provides a promising approach to save energy and improve resource utilization in data centers. Many heuristic algorithms have been proposed to tackle the VM consolidation as a vector bin-packing problem. However, the existing algorithms have focused mostly on the number of active Physical Machines (PMs) minimization according to their current resource requirements and neglected the future resource demands. Therefore, they generate unnecessary VM migrations and increase the rate of Service Level Agreement (SLA) violations in data centers. To address this problem, we propose a VM consolidation approach that takes into account both the current and future utilization of resources. Our approach uses a regression-based model to approximate the future CPU and memory utilization of VMs and PMs. We investigate the effectiveness of virtual and physical resource utilization prediction in VM consolidation performance using Google cluster and PlanetLab real workload traces. The experimental results show, our approach provides substantial improvement over other heuristic and meta-heuristic algorithms in reducing the energy consumption, the number of VM migrations and the number of SLA violations.

140 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: This survey classifies the IoT security threats and challenges for IoT networks by evaluating existing defense techniques and provides a comprehensive review of NIDSs deploying different aspects of learning techniques for IoT, unlike other top surveys targeting the traditional systems.
Abstract: Pervasive growth of Internet of Things (IoT) is visible across the globe. The 2016 Dyn cyberattack exposed the critical fault-lines among smart networks. Security of IoT has become a critical concern. The danger exposed by infested Internet-connected Things not only affects the security of IoT but also threatens the complete Internet eco-system which can possibly exploit the vulnerable Things (smart devices) deployed as botnets. Mirai malware compromised the video surveillance devices and paralyzed Internet via distributed denial of service attacks. In the recent past, security attack vectors have evolved bothways, in terms of complexity and diversity. Hence, to identify and prevent or detect novel attacks, it is important to analyze techniques in IoT context. This survey classifies the IoT security threats and challenges for IoT networks by evaluating existing defense techniques. Our main focus is on network intrusion detection systems (NIDSs); hence, this paper reviews existing NIDS implementation tools and datasets as well as free and open-source network sniffing software. Then, it surveys, analyzes, and compares state-of-the-art NIDS proposals in the IoT context in terms of architecture, detection methodologies, validation strategies, treated threats, and algorithm deployments. The review deals with both traditional and machine learning (ML) NIDS techniques and discusses future directions. In this survey, our focus is on IoT NIDS deployed via ML since learning algorithms have a good success rate in security and privacy. The survey provides a comprehensive review of NIDSs deploying different aspects of learning techniques for IoT, unlike other top surveys targeting the traditional systems. We believe that, this paper will be useful for academia and industry research, first, to identify IoT threats and challenges, second, to implement their own NIDS and finally to propose new smart techniques in IoT context considering IoT limitations. Moreover, the survey will enable security individuals differentiate IoT NIDS from traditional ones.

494 citations

Journal ArticleDOI
TL;DR: This paper mainly focus on the application of deep learning architectures to three major applications, namely (i) wild animal detection, (ii) small arm detection and (iii) human being detection.
Abstract: Deep learning has developed as an effective machine learning method that takes in numerous layers of features or representation of the data and provides state-of-the-art results. The application of deep learning has shown impressive performance in various application areas, particularly in image classification, segmentation and object detection. Recent advances of deep learning techniques bring encouraging performance to fine-grained image classification which aims to distinguish subordinate-level categories. This task is extremely challenging due to high intra-class and low inter-class variance. In this paper, we provide a detailed review of various deep architectures and model highlighting characteristics of particular model. Firstly, we described the functioning of CNN architectures and its components followed by detailed description of various CNN models starting with classical LeNet model to AlexNet, ZFNet, GoogleNet, VGGNet, ResNet, ResNeXt, SENet, DenseNet, Xception, PNAS/ENAS. We mainly focus on the application of deep learning architectures to three major applications, namely (i) wild animal detection, (ii) small arm detection and (iii) human being detection. A detailed review summary including the systems, database, application and accuracy claimed is also provided for each model to serve as guidelines for future work in the above application areas.

435 citations

Journal ArticleDOI
TL;DR: Various technologies and issues regarding green IoT, which further reduces the energy consumption of IoT are discussed, and the latest developments and future vision about sensor cloud are reviewed and introduced.
Abstract: Smart world is envisioned as an era in which objects (e.g., watches, mobile phones, computers, cars, buses, and trains) can automatically and intelligently serve people in a collaborative manner. Paving the way for smart world, Internet of Things (IoT) connects everything in the smart world. Motivated by achieving a sustainable smart world, this paper discusses various technologies and issues regarding green IoT, which further reduces the energy consumption of IoT. Particularly, an overview regarding IoT and green IoT is performed first. Then, the hot green information and communications technologies (ICTs) (e.g., green radio-frequency identification, green wireless sensor network, green cloud computing, green machine to machine, and green data center) enabling green IoT are studied, and general green ICT principles are summarized. Furthermore, the latest developments and future vision about sensor cloud, which is a novel paradigm in green IoT, are reviewed and introduced, respectively. Finally, future research directions and open problems about green IoT are presented. Our work targets to be an enlightening and latest guidance for research with respect to green IoT and smart world.

393 citations

Journal ArticleDOI
01 Jan 2021
TL;DR: The concept of IDS is clarified and the taxonomy based on the notable ML and DL techniques adopted in designing network‐based IDS (NIDS) systems is provided, which highlights various research challenges and provided the future scope for the research in improving ML andDL‐based NIDS.
Abstract: The rapid advances in the internet and communication fields have resulted in a huge increase in the network size and the corresponding data. As a result, many novel attacks are being gener...

346 citations