scispace - formally typeset
Search or ask a question
Author

Fan Xia

Bio: Fan Xia is an academic researcher from Sun Yat-sen University. The author has contributed to research in topics: Autophagy & Medicine. The author has an hindex of 4, co-authored 6 publications receiving 26 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A novel molecular mechanism that oxidative modification at Cys292 and Cys361 sites regulates ATG4B function, which modulates autophagy, which reveals increased autophagic flux and decreased oxidation sensitivity.
Abstract: Macroautophagy/autophagy plays a pivotal role in cytoplasmic material recycling and metabolic turnover, in which ATG4B functions as a "scissor" for processing pro-LC3 and lipidated LC3 to drive the autophagy progress. Mounting evidence has demonstrated the tight connection between ROS and autophagy during various pathological situations. Coincidentally, several studies have shown that ATG4B is potentially regulated by redox modification, but the underlying molecular mechanism and its relationship with autophagy is ambiguous. In this study, we verified that ATG4B activity was definitely regulated in a reversible redox manner. We also determined that Cys292 and Cys361 are essential sites of ATG4B to form reversible intramolecular disulfide bonds that respond to oxidative stress. Interestingly, we unraveled a new phenomenon that ATG4B concurrently formed disulfide-linked oligomers at Cys292 and Cys361, and that both sites underwent redox modifications thereby modulating ATG4B activity. Finally, increased autophagic flux and decreased oxidation sensitivity were observed in Cys292 and Cys361 double site-mutated cells under normal growth conditions. In conclusion, our research reveals a novel molecular mechanism that oxidative modification at Cys292 and Cys361 sites regulates ATG4B function, which modulates autophagy.Abbreviations: Air-ox: air-oxidation; ATG4B: autophagy related 4B cysteine peptidase; BCNU: 1,3-bis(2-chloroethyl)-1-nitrosourea; CBB: Coomassie Brilliant Blue; CM: complete medium; CQ: chloroquine; DTT: dithiothreitol; GSH: reduced glutathione; GSNO: S-nitrosoglutathione; GSSG: oxidized glutathione; HMW: high molecular weight; H2O2: hydrogen peroxide; NAC: N-acetyl-L-cysteine; NEM: N-ethylmaleimide; PE: phosphatidylethanolamine; PTM: post-translational modification; ROS, reactive oxygen species; WT: wild type.

22 citations

Journal ArticleDOI
10 Jun 2020-Cancers
TL;DR: The current study findings indicate that the dual effect inhibitor 163N offers an attractive new anti-cancer drug and compounds having a combination of lysosome inhibition and ATG4B inhibition are a promising therapeutic strategy for colorectal cancer therapy.
Abstract: Autophagy inhibition has been proposed to be a potential therapeutic strategy for cancer, however, few autophagy inhibitors have been developed. Recent studies have indicated that lysosome and autophagy related 4B cysteine peptidase (ATG4B) are two promising targets in autophagy for cancer therapy. Although some inhibitors of either lysosome or ATG4B were reported, there are limitations in the use of these single target compounds. Considering multi-functional drugs have advantages, such as high efficacy and low toxicity, we first screened and validated a batch of compounds designed and synthesized in our laboratory by combining the screening method of ATG4B inhibitors and the identification method of lysosome inhibitors. ATG4B activity was effectively inhibited in vitro. Moreover, 163N inhibited autophagic flux and caused the accumulation of autolysosomes. Further studies demonstrated that 163N could not affect the autophagosome-lysosome fusion but could cause lysosome dysfunction. In addition, 163N diminished tumor cell viability and impaired the development of colorectal cancer in vivo. The current study findings indicate that the dual effect inhibitor 163N offers an attractive new anti-cancer drug and compounds having a combination of lysosome inhibition and ATG4B inhibition are a promising therapeutic strategy for colorectal cancer therapy.

12 citations

Journal ArticleDOI
15 Mar 2019-Cells
TL;DR: It is found that niclosamide, an anti-helminthic drug approved by the Food and Drug Administration, could induce canonical autophagy via a feedback downregulation of mTOR complex 1 and could also induce NCLL, which is independent of the ULK1 complex and Beclin 1 complex, but dependent on ubiquitin-like conjugation systems.
Abstract: Autophagy is a highly- evolutionarily-conserved catabolic pathway activated by various cellular stresses. Recently, non-canonical autophagy (NCA), which does not require all of the ATG proteins to form autophagosome or autophagosome-like structures, has been found in various conditions. Moreover, mounting evidence has indicated that non-canonical LC3 lipidation (NCLL) may reflect NCA. We and others have reported that niclosamide (Nic), an anti-helminthic drug approved by the Food and Drug Administration, could induce canonical autophagy via a feedback downregulation of mTOR complex 1. In this study, we found that Nic could also induce NCLL, which is independent of the ULK1 complex and Beclin 1 complex, but dependent on ubiquitin-like conjugation systems. Although bafilomycin A1 and concanamycin A, two known V-ATPase inhibitors, significantly inhibited Nic-induced NCLL, Nic-induced NCLL was demonstrated to be independent of V-ATPase. In addition, the Golgi complex and vimentin were involved in Nic-induced NCLL, which might be a platform or membrane source for Nic-induced LC3-positive structures. These results would be helpful to broaden our understanding of the working mechanisms of Nic and evaluate its pharmacological activities in diseases.

10 citations

Journal ArticleDOI
TL;DR: The results suggest that L QG inhibited lipid accumulation via mTOR-mediated autophagy in 3T3-L1 white adipocytes, indicating the role of LQG as a potential natural bioactive component for use in dietary supplements for preventing obesity.
Abstract: Liquiritigenin (LQG) is a natural flavonoid from the herb Glycyrrhiza uralensis Fisch that exhibits multiple biological activities. However, its specific role in antiobesity and its related underlying molecular mechanisms remain unknown. The primary purpose of this study is to explore the effects and regulatory mechanisms of LQG on lipid accumulation in 3T3-L1 adipocytes. The results show that LQG significantly reduced triglyceride levels and downregulated the expression of transcription factors such as CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) in 3T3-L1 adipocytes. Additionally, the expression of sterol-regulatory element-binding protein 1c (SREBP1c), acetyl-CoA carboxylase 1 (ACC1), and fatty acid synthase (FASN) involved in lipogenesis was reduced by treatment with LQG. The protein expression levels of light chain 3B (LC3B), autophagy-related protein 7 (ATG7) and p62 were also modulated by LQG, leading to the suppression of autophagy. Further, LQG activated the phosphorylation of the mammalian target of rapamycin (mTOR), the inhibition of which was followed by the restored expression of autophagy-related proteins. Pretreatment with an mTOR inhibitor also reverted the expression of several genes or proteins involved in lipid synthesis. These results suggest that LQG inhibited lipid accumulation via mTOR-mediated autophagy in 3T3-L1 white adipocytes, indicating the role of LQG as a potential natural bioactive component for use in dietary supplements for preventing obesity.

6 citations

15 Mar 2019
TL;DR: In this article, the authors found that Nic could also induce non-canonical LC3 lipidation, which is independent of the ULK1 complex and Beclin 1 complex, but dependent on ubiquitin-like conjugation systems.
Abstract: Autophagy is a highly- evolutionarily-conserved catabolic pathway activated by various cellular stresses. Recently, non-canonical autophagy (NCA), which does not require all of the ATG proteins to form autophagosome or autophagosome-like structures, has been found in various conditions. Moreover, mounting evidence has indicated that non-canonical LC3 lipidation (NCLL) may reflect NCA. We and others have reported that niclosamide (Nic), an anti-helminthic drug approved by the Food and Drug Administration, could induce canonical autophagy via a feedback downregulation of mTOR complex 1. In this study, we found that Nic could also induce NCLL, which is independent of the ULK1 complex and Beclin 1 complex, but dependent on ubiquitin-like conjugation systems. Although bafilomycin A1 and concanamycin A, two known V-ATPase inhibitors, significantly inhibited Nic-induced NCLL, Nic-induced NCLL was demonstrated to be independent of V-ATPase. In addition, the Golgi complex and vimentin were involved in Nic-induced NCLL, which might be a platform or membrane source for Nic-induced LC3-positive structures. These results would be helpful to broaden our understanding of the working mechanisms of Nic and evaluate its pharmacological activities in diseases.

5 citations


Cited by
More filters
01 Jan 2012
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

173 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the role of redox-sensitive chaperone-like proteins (e.g., PRDX family members and PARK7) in the degradation of the cargo and recycling of the products.
Abstract: Macroautophagy/autophagy is an evolutionarily well-conserved recycling process in response to stress conditions, including a burst of reactive oxygen species (ROS) production. High level of ROS attack key cellular macromolecules. Protein cysteinyl thiols or non-protein thiols as the major redox-sensitive targets thus constitute the first-line defense. Autophagy is unique, because it removes not only oxidized/damaged proteins but also bulky ROS-generating organelles (such as mitochondria and peroxisome) to restrict further ROS production. The oxidative regulations of autophagy occur in all processes of autophagy, from induction, phagophore nucleation, phagophore expansion, autophagosome maturation, cargo delivery to the lysosome, and finally to degradation of the cargo and recycling of the products, as well as autophagy gene transcription. Mechanically, these regulations are achieved through direct or indirect manners. Direct thiol oxidation of key proteins such as ATG4, ATM and TFEB are responsible for specific regulations in phagophore expansion, cargo recognition and autophagy gene transcription, respectively. Meanwhile, oxidation of certain redox-sensitive chaperone-like proteins (e.g. PRDX family members and PARK7) may impair a nonspecifically local reducing environment in the phagophore membrane, and influence BECN1-involved phagophore nucleation and mitophagy recognition. However, ROS do exhibit some inhibitory effects on autophagy through direct oxidation of key autophagy regulators such as ATG3, ATG7 and SENP3 proteins. SQSTM1 provides an alternative antioxidant mechanism when autophagy is unavailable or impaired. However, it is yet to be unraveled how cells evolve to equip proteins with different redox susceptibility and in their correct subcellular positions, and how cells fine-tune autophagy machinery in response to different levels of ROS.Abbreviations: AKT1/PKB: AKT serine/threonine kinase 1; AMPK: AMP-activated protein kinase; ATG: autophagy related; ATM: ATM serine/threonine kinase; BAX: BCL2 associated X, apoptosis regulator; BECN1: beclin 1; BH3: BCL2-homology-3; CAV1: caveolin 1; CCCP: carbonyl cyanide m-chlorophenylhydrazone; CTSB: cathepsin B; CTSL: cathepsin L; DAPK: death associated protein kinase; ER: endoplasmic reticulum; ETC: electron transport chain; GSH: glutathione; GSTP1: glutathione S-transferase pi 1; H2O2: hydrogen peroxide; HK2: hexokinase 2; KEAP1: kelch like ECH associated protein 1; MAMs: mitochondria-associated ER membranes; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MAPK8/JNK1: mitogen-activated protein kinase 8; MAP3K5/ASK1: mitogen-activated protein kinase kinase kinase 5; MCOLN1: mucolipin 1; MMP: mitochondrial membrane potential; MTOR: mechanistic target of rapamycin kinase; NFE2L2/NRF2: nuclear factor, erythroid 2 like 2; NFKB1: nuclear factor kappa B subunit 1; NOX: NADPH oxidase; O2-: superoxide radical anion; p-Ub: phosphorylated Ub; PARK7/DJ-1: Parkinsonism associated deglycase; PE: phosphatidylethanolamine; PEX5: peroxisomal biogenesis factor 5; PINK1: PTEN induced kinase 1; PPP3CA/calcineurin: protein phosphatase 3 catalytic subunit beta; PRDX: peroxiredoxin; PRKAA1: protein kinase AMP-activated catalytic subunit alpha 1; PRKD/PKD: protein kinase D; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; PTEN: phosphatase and tensin homolog; ROS: reactive oxygen species; SENP3: SUMO specific peptidase 3; SIRT1: sirtuin 1; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; SUMO: small ubiquitin like modifier; TFEB: transcription factor EB; TRAF6: TNF receptor associated factor 6; TSC2: TSC complex subunit 2; TXN: thioredoxin; TXNRD1: thioredoxin reductase 1; TXNIP: thioredoxin interacting protein; Ub: ubiquitin; ULK1: unc-51 like autophagy activating kinase 1.

61 citations

Journal ArticleDOI
TL;DR: The data strongly suggest that the negative regulation of autophagy by sulfide is mediated by specific persulfidation of the ATG4 protease.
Abstract: Hydrogen sulfide is a signaling molecule that regulates essential processes in plants, such as autophagy. In Arabidopsis (Arabidopsis thaliana), hydrogen sulfide negatively regulates autophagy independently of reactive oxygen species via an unknown mechanism. Comparative and quantitative proteomic analysis was used to detect abscisic acid-triggered persulfidation that reveals a main role in the control of autophagy mediated by the autophagy-related (ATG) Cys protease AtATG4a. This protease undergoes specific persulfidation of Cys170 that is a part of the characteristic catalytic Cys-His-Asp triad of Cys proteases. Regulation of the ATG4 activity by persulfidation was tested in a heterologous assay using the Chlamydomonas reinhardtii CrATG8 protein as a substrate. Sulfide significantly and reversibly inactivates AtATG4a. The biological significance of the reversible inhibition of the ATG4 by sulfide is supported by the results obtained in Arabidopsis leaves under basal and autophagy-activating conditions. A significant increase in the overall ATG4 proteolytic activity in Arabidopsis was detected under nitrogen starvation and osmotic stress and can be inhibited by sulfide. Therefore, the data strongly suggest that the negative regulation of autophagy by sulfide is mediated by specific persulfidation of the ATG4 protease.

56 citations

Journal ArticleDOI
TL;DR: It is hinted how lipid rafts and autophagy may represent a potential therapeutic target to be investigated for the treatment of coronavirus infections.
Abstract: Coronaviruses are enveloped, single-stranded, positive-sense RNA viruses that can infect animal and human hosts. The infection induces mild or sometimes severe acute respiratory diseases. Nowadays, the appearance of a new, highly pathogenic and lethal coronavirus variant, SARS-CoV-2, responsible for a pandemic (COVID-19), represents a global problem for human health. Unfortunately, only limited approaches are available to treat coronavirus infections and a vaccine against this new coronavirus variant is not yet available. The plasma membrane microdomain lipid rafts have been found by researchers to be involved in the replication cycle of numerous viruses, including coronaviruses. Indeed, some pathogen recognition receptors for coronaviruses as for other viruses cluster into lipid rafts, and it is therefore conceivable that the first contact between virus and host cells occurs into these specialized regions, representing a port of cell entry for viruses. Recent data highlighted the peculiar pro-viral or anti-viral role played by autophagy in the host immune responses to viral infections. Coronaviruses, like other viruses, were reported to be able to exploit the autophagic machinery to increase their replication or to inhibit the degradation of viral products. Agents known to disrupt lipid rafts, such as metil-β-cyclodextrins or statins, as well as autophagy inhibitor agents, were shown to have an anti-viral role. In this review, we briefly describe the involvement of lipid rafts and autophagy in coronavirus infection and replication. We also hint how lipid rafts and autophagy may represent a potential therapeutic target to be investigated for the treatment of coronavirus infections.

51 citations

Journal ArticleDOI
TL;DR: In this article, a review of Lysosomal reformation, maintenance, and degradation pathways following the involvement of the lysosome in autophagy and cell death, which are related to several pathophysiological conditions observed in humans.
Abstract: Lysosomes are single membrane-bound organelles containing acid hydrolases responsible for the degradation of cellular cargo and maintenance of cellular homeostasis. Lysosomes could originate from pre-existing endolysosomes or autolysosomes, acting as a critical juncture between autophagy and endocytosis. Stress that triggers lysosomal membrane permeabilization can be altered by ESCRT complexes; however, irreparable damage to the membrane results in the induction of a selective lysosomal degradation pathway, specifically lysophagy. Lysosomes play an indispensable role in different types of autophagy, including microautophagy, macroautophagy, and chaperone-mediated autophagy, and various cell death pathways such as lysosomal cell death, apoptotic cell death, and autophagic cell death. In this review, we discuss lysosomal reformation, maintenance, and degradation pathways following the involvement of the lysosome in autophagy and cell death, which are related to several pathophysiological conditions observed in humans.

39 citations