scispace - formally typeset
Search or ask a question
Author

Fan Ye

Bio: Fan Ye is an academic researcher from Veterans Health Administration. The author has contributed to research in topics: Skeletal muscle & Soleus muscle. The author has an hindex of 14, co-authored 27 publications receiving 523 citations. Previous affiliations of Fan Ye include American Physical Therapy Association & University of Florida.

Papers
More filters
Journal ArticleDOI
TL;DR: Differences in the degree to which serum DHT is elevated may underlie the varying CV risk by TRT administration route, as elevated serum dihydrotestosterone has been shown to be associated with CV risk in observational studies.
Abstract: Potential cardiovascular (CV) risks of testosterone replacement therapy (TRT) are currently a topic of intense interest. However, no studies have addressed CV risk as a function of the route of administration of TRT. Two meta-analyses were conducted, one of CV adverse events (AEs) in 35 randomized controlled trials (RCTs) of TRT lasting 12 weeks or more, and one of 32 studies reporting the effect of TRT on serum testosterone and dihydrotestosterone (DHT). CV risks of TRT: Of 2,313 studies identified, 35 were eligible and included 3,703 mostly older men who experienced 218 CV-related AEs. No significant risk for CV AEs was present when all TRT administration routes were grouped (relative risk (RR) = 1.28, 95% confidence interval (CI): 0.76 to 2.13, P = 0.34). When analyzed separately, oral TRT produced significant CV risk (RR = 2.20, 95% CI: 1.45 to 3.55, P = 0.015), while neither intramuscular (RR = 0.66, 95% CI: 0.28 to 1.56, P = 0.32) nor transdermal (gel or patch) TRT (RR = 1.27, 95% CI: 0.62 to 2.62, P = 0.48) significantly altered CV risk. Serum testosterone/DHT following TRT: Of 419 studies identified, 32 were eligible which included 1,152 men receiving TRT. No significant difference in the elevation of serum testosterone was present between intramuscular or transdermal TRT. However, transdermal TRT elevated serum DHT (5.46-fold, 95% CI: 4.51 to 6.60) to a greater magnitude than intramuscular TRT (2.20-fold, 95% CI: 1.74 to 2.77). Oral TRT produces significant CV risk. While no significant effects on CV risk were observed with either injected or transdermal TRT, the point estimates suggest that further research is needed to establish whether administration by these routes is protective or detrimental, respectively. Differences in the degree to which serum DHT is elevated may underlie the varying CV risk by TRT administration route, as elevated serum dihydrotestosterone has been shown to be associated with CV risk in observational studies.

99 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of virally mediated overexpression of IGF-1 on the soleus muscle following hindlimb cast immobilization and upon reloading was examined.
Abstract: Skeletal muscle is a highly dynamic tissue that responds to endogenous and external stimuli, including alterations in mechanical loading and growth factors. In particular, the antigravity soleus muscle experiences significant muscle atrophy during disuse and extensive muscle damage upon reloading. Given that insulin-like growth factor-1 (IGF-1) has been implicated as a central regulator of muscle repair and modulation of muscle size, we examined the effect of virally mediated overexpression of IGF-1 on the soleus muscle following hindlimb cast immobilization and upon reloading. Recombinant IGF-1 cDNA virus was injected into one of the posterior hindlimbs of the mice, while the contralateral limb was injected with saline (control). At 20 weeks of age, both hindlimbs were immobilized for 2 weeks to induce muscle atrophy in the soleus and ankle plantarflexor muscle group. Subsequently, the mice were allowed to reambulate, and muscle damage and recovery were monitored over a period of 2-21 days. The primary finding of this study was that IGF-1 overexpression attenuated reloading-induced muscle damage in the soleus muscle, and accelerated muscle regeneration and force recovery. Muscle T2 assessed by magnetic resonance imaging, a non-specific marker of muscle damage, was significantly lower in IGF-1-injected compared with contralateral soleus muscles at 2 and 5 days reambulation (P<0.05). The reduced prevalence of muscle damage in IGF-1-injected soleus muscles was confirmed on histology, with a lower fractional area of abnormal muscle tissue in IGF-1-injected muscles at 2 days reambulation (33.2±3.3 versus 54.1±3.6%, P<0.05). Evidence of the effect of IGF-1 on muscle regeneration included timely increases in the number of central nuclei (21% at 5 days reambulation), paired-box transcription factor 7 (36% at 5 days), embryonic myosin (37% at 10 days) and elevated MyoD mRNA (7-fold at 2 days) in IGF-1-injected limbs (P<0.05). These findings demonstrate a potential role of IGF-1 in protecting unloaded skeletal muscles from damage and accelerating muscle repair and regeneration.

57 citations

Journal ArticleDOI
TL;DR: The findings provide the first evidence indicating that sclerostin inhibition represents a viable treatment to prevent SCI‐induced cancellous and cortical bone deficits and provides preliminary rationale for future clinical trials focused on evaluating whether Scl‐Ab prevents osteoporosis in the SCI population.
Abstract: Spinal cord injury (SCI) results in rapid and extensive sublesional bone loss. Sclerostin, an osteocyte-derived glycoprotein that negatively regulates intraskeletal Wnt signaling, is elevated after SCI and may represent a mechanism underlying this excessive bone loss. However, it remains unknown whether pharmacologic sclerostin inhibition ameliorates bone loss subsequent to SCI. Our primary purposes were to determine whether a sclerostin antibody (Scl-Ab) prevents hindlimb cancellous bone loss in a rodent SCI model and to compare the effects of a Scl-Ab to that of testosterone-enanthate (TE), an agent that we have previously shown prevents SCI-induced bone loss. Fifty-five (n = 11–19/group) skeletally mature male Sprague-Dawley rats were randomized to receive: (A) SHAM surgery (T8 laminectomy), (B) moderate-severe (250 kilodyne) SCI, (C) 250 kilodyne SCI + TE (7.0 mg/wk, im), or (D) 250 kilodyne SCI + Scl-Ab (25 mg/kg, twice weekly, sc) for 3 weeks. Twenty-one days post-injury, SCI animals exhibited reduced hindlimb cancellous bone volume at the proximal tibia (via μCT and histomorphometry) and distal femur (via μCT), characterized by reduced trabecular number and thickness. SCI also reduced trabecular connectivity and platelike trabecular structures, indicating diminished structural integrity of the remaining cancellous network, and produced deficits in cortical bone (femoral diaphysis) strength. Scl-Ab and TE both prevented SCI-induced cancellous bone loss, albeit via differing mechanisms. Specifically, Scl-Ab increased osteoblast surface and bone formation, indicating direct bone anabolic effects, whereas TE reduced osteoclast surface with minimal effect on bone formation, indicating antiresorptive effects. The deleterious microarchitectural alterations in the trabecular network were also prevented in SCI + Scl-Ab and SCI + TE animals, whereas only Scl-Ab completely prevented the reduction in cortical bone strength. Our findings provide the first evidence indicating that sclerostin inhibition represents a viable treatment to prevent SCI-induced cancellous and cortical bone deficits and provides preliminary rationale for future clinical trials focused on evaluating whether Scl-Ab prevents osteoporosis in the SCI population. © 2014 American Society for Bone and Mineral Research.

52 citations

Journal ArticleDOI
TL;DR: Evidence of enhanced muscle regeneration was noted in IGF-I-overexpressing muscles with an increased prevalence of central nuclei, embryonic myosin, and Pax7 positive fibers after 1 wk of reambulation, although overexpression did not protect against cast immobilization-induced muscle atrophy.
Abstract: Insulin-like growth factor I (IGF-I) is a potent myogenic factor that plays a critical role in muscle regeneration and muscle hypertrophy. The purpose of this study was to evaluate the effect of IGF-I overexpression on the recovery of muscle size and function during reloading/reambulation after a period of cast immobilization in predominantly fast twitch muscles. In addition, we investigated concomitant molecular responses in IGF-I receptor and binding proteins (BPs). Recombinant adeno-associated virus vector for IGF-I (rAAV-IGF-IA) was injected into the anterior compartment of one of the hindlimbs of young (3 wk) C57BL6 female mice. At 20 wk of age, both hindlimbs were cast immobilized in a shortened position for 2 wk to unload the tibialis anterior (TA) and extensor longus digitorum (EDL) muscles. The TA and EDL muscles were removed bilaterally after 2 wk of cast immobilization and after 1 and 3 wk of free cage reambulation. Increases in IGF-I mRNA and protein levels with IGF-I overexpression were associated with significant increases in muscle wet weight, fiber size, and tetanic force, although overexpression did not protect against cast immobilization-induced muscle atrophy. After 1 wk of reambulation, evidence of enhanced muscle regeneration was noted in IGF-I-overexpressing muscles with an increased prevalence of central nuclei, embryonic myosin, and Pax7 positive fibers. We also observed larger relative gains in muscle size (wet weight and fiber area), but not force, during the 3-wk reambulation period in hindlimb muscles overexpressing IGF-I compared with contralateral control legs. Changes in IGFBP-5 mRNA expression during cast immobilization and reambulation paralleled those of IGF-I, whereas IGFBP-3 expression changed inversely to IGFBP-5.

47 citations

Journal ArticleDOI
TL;DR: Whether testosterone-enanthate (TE) attenuates hindlimb bone loss in a rodent moderate/severe contusion SCI model and whether testosterone prevents bone loss accompanying spinal cord injury is determined.
Abstract: Androgen administration protects against musculoskeletal deficits in models of sex-steroid deficiency and injury/disuse It remains unknown, however, whether testosterone prevents bone loss accompanying spinal cord injury (SCI), a condition that results in a near universal occurrence of osteoporosis Our primary purpose was to determine whether testosterone-enanthate (TE) attenuates hindlimb bone loss in a rodent moderate/severe contusion SCI model Forty (n=10/group), 14 week old male Sprague-Dawley rats were randomized to receive: (1) Sham surgery (T9 laminectomy), (2) moderate/severe (250 kdyne) SCI, (3) SCI+Low-dose TE (20 mg/week), or (4) SCI+High-dose TE (70 mg/week) Twenty-one days post-injury, SCI animals exhibited a 77–85% reduction in hindlimb cancellous bone volume at the distal femur (measured via μCT) and proximal tibia (measured via histomorphometry), characterized by a >70% reduction in trabecular number, 13–27% reduction in trabecular thickness, and increased trabecular separat

47 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is suggested that when clinicians institute T therapy, they aim at achieving T concentrations in the mid-normal range during treatment with any of the approved formulations, taking into consideration patient preference, pharmacokinetics, formulation-specific adverse effects, treatment burden, and cost.
Abstract: Objective To update the "Testosterone Therapy in Men With Androgen Deficiency Syndromes" guideline published in 2010. Participants The participants include an Endocrine Society-appointed task force of 10 medical content experts and a clinical practice guideline methodologist. Evidence This evidence-based guideline was developed using the Grading of Recommendations, Assessment, Development, and Evaluation approach to describe the strength of recommendations and the quality of evidence. The task force commissioned two systematic reviews and used the best available evidence from other published systematic reviews and individual studies. Consensus process One group meeting, several conference calls, and e-mail communications facilitated consensus development. Endocrine Society committees and members and the cosponsoring organization were invited to review and comment on preliminary drafts of the guideline. Conclusions We recommend making a diagnosis of hypogonadism only in men with symptoms and signs consistent with testosterone (T) deficiency and unequivocally and consistently low serum T concentrations. We recommend measuring fasting morning total T concentrations using an accurate and reliable assay as the initial diagnostic test. We recommend confirming the diagnosis by repeating the measurement of morning fasting total T concentrations. In men whose total T is near the lower limit of normal or who have a condition that alters sex hormone-binding globulin, we recommend obtaining a free T concentration using either equilibrium dialysis or estimating it using an accurate formula. In men determined to have androgen deficiency, we recommend additional diagnostic evaluation to ascertain the cause of androgen deficiency. We recommend T therapy for men with symptomatic T deficiency to induce and maintain secondary sex characteristics and correct symptoms of hypogonadism after discussing the potential benefits and risks of therapy and of monitoring therapy and involving the patient in decision making. We recommend against starting T therapy in patients who are planning fertility in the near term or have any of the following conditions: breast or prostate cancer, a palpable prostate nodule or induration, prostate-specific antigen level > 4 ng/mL, prostate-specific antigen > 3 ng/mL in men at increased risk of prostate cancer (e.g., African Americans and men with a first-degree relative with diagnosed prostate cancer) without further urological evaluation, elevated hematocrit, untreated severe obstructive sleep apnea, severe lower urinary tract symptoms, uncontrolled heart failure, myocardial infarction or stroke within the last 6 months, or thrombophilia. We suggest that when clinicians institute T therapy, they aim at achieving T concentrations in the mid-normal range during treatment with any of the approved formulations, taking into consideration patient preference, pharmacokinetics, formulation-specific adverse effects, treatment burden, and cost. Clinicians should monitor men receiving T therapy using a standardized plan that includes: evaluating symptoms, adverse effects, and compliance; measuring serum T and hematocrit concentrations; and evaluating prostate cancer risk during the first year after initiating T therapy.

907 citations

Journal ArticleDOI
TL;DR: It is proposed that estrogens influence fracture risk in aging men via direct effects on bone, whereas androgens exert an additional antifracture effect mainly via extraskeletal parameters such as muscle mass and propensity to fall.
Abstract: Sex steroids are chief regulators of gender differences in the skeleton, and male gender is one of the strongest protective factors against osteoporotic fractures. This advantage in bone strength relies mainly on greater cortical bone expansion during pubertal peak bone mass acquisition and superior skeletal maintenance during aging. During both these phases, estrogens acting via estrogen receptor-α in osteoblast lineage cells are crucial for male cortical and trabecular bone, as evident from conditional genetic mouse models, epidemiological studies, rare genetic conditions, genome-wide meta-analyses, and recent interventional trials. Genetic mouse models have also demonstrated a direct role for androgens independent of aromatization on trabecular bone via the androgen receptor in osteoblasts and osteocytes, although the target cell for their key effects on periosteal bone formation remains elusive. Low serum estradiol predicts incident fractures, but the highest risk occurs in men with additionally low T and high SHBG. Still, the possible clinical utility of serum sex steroids for fracture prediction is unknown. It is likely that sex steroid actions on male bone metabolism rely also on extraskeletal mechanisms and cross talk with other signaling pathways. We propose that estrogens influence fracture risk in aging men via direct effects on bone, whereas androgens exert an additional antifracture effect mainly via extraskeletal parameters such as muscle mass and propensity to fall. Given the demographic trends of increased longevity and consequent rise of osteoporosis, an increased understanding of how sex steroids influence male bone health remains a high research priority.

234 citations

Journal ArticleDOI
TL;DR: Exercise-induced stimulation of bioactive cytokines, through muscle-bone-fat crosstalk, increases muscle anabolism, bone formation, mitochondrial biogenesis, glucose utilization, and fatty acid oxidation, and attenuates chronic LGI.
Abstract: Skeletal muscle and bone are connected anatomically and physiologically, and play a crucial role in human locomotion and metabolism. Historically, the coupling between muscle and bone has been viewed in light of mechanotransduction, which dictates that the mechanical forces applied to muscle are transmitted to the skeleton to initiate bone formation. However, these organs also communicate through the endocrine system, orchestrated by a family of cytokines namely myokines (derived from myocytes) and osteokines (derived from bone cells). A third player in this biochemical crosstalk is adipose tissue and the secretion of adipokines (derived from adipocytes). In this review, we discuss the bidirectional effects of myokines and osteokines on muscle and bone metabolism, and the impact of adipokines on both of these secretory organs. Several myokines, notably, IL6, irisin, IGF-1, BDNF, myostatin, and FGF2 exert anabolic/catabolic effects on bone, while the osteokines osteocalcin and sclerostin have shown to induce muscle anabolism and catabolism, respectively. Adipokines, such as leptin, resistin, adiponectin, and TNFα (released from adipose tissue), can also modulate muscle and bone metabolism. Contrarily, exercise-mediated release of lipolytic myokines (IL6, irisin, and LIF) stimulates thermogenesis by promoting the browning of adipocytes. Myokines, osteokines, and adipokines exert autocrine/paracrine effects locally as well as through the endocrine system, to regulate muscle, bone, and fat metabolism. Reductions in physical activity and increases in energy intake, both linked with aging, leads to adipocyte hypertrophy and the recruitment of immunological cells (macrophages). In turn, this releases pro-inflammatory adipokines which induces chronic low-grade inflammation (LGI), a key player in the pathology of several diseases. However, exercise-induced stimulation of bioactive cytokines, through muscle-bone-fat crosstalk, increases muscle anabolism, bone formation, mitochondrial biogenesis, glucose utilization, and fatty acid oxidation, and attenuates chronic LGI.

186 citations

Journal ArticleDOI
TL;DR: Low‐quality evidence suggests that sex steroid therapy may increase LDL‐C and TG levels and decrease HDL‐C level in FTM individuals, whereas oral estrogens may increase TG levels in MTF individuals.
Abstract: Background Transgender individuals receive cross-sex hormonal therapy to induce desired secondary sexual characteristics despite limited data regarding its effects on cardiovascular health. Methods A comprehensive search of several databases up to 7 April 2015 was conducted for studies evaluating the effect of sex steroid use on lipids, myocardial infarction, stroke, venous thromboembolism (VTE), and mortality in transgender individuals. Pairs of reviewers selected and appraised the studies. A random-effects model was used to pool weighted mean differences and 95% confidence intervals (CIs). Results We found 29 eligible studies with moderate risk of bias. In female-to-male (FTM) individuals, sex steroid therapy was associated with statistically significant increases in serum triglyceride (TG) levels at 3 to 6 months and at ≥24 months (21.4 mg/dL; 95% CI: 0.14 to 42.6) and in low-density lipoprotein cholesterol (LDL-C) levels at 12 months and ≥24 months (17.8 mg/dL; 95% CI: 3.5 to 32.1). High-density lipoprotein cholesterol (HDL-C) levels decreased significantly across all follow-up periods (highest at ≥24 months, -8.5 mg/dL; 95% CI: -13.0 to -3.9). In male-to-female (MTF) individuals, serum TG levels were significantly higher at ≥24 months (31.9 mg/dL; 95% CI: 3.9 to 59.9) without any changes in other parameters. Few myocardial infarction, stroke, VTE, and death events were reported (more frequently in MTF individuals). Conclusions Low-quality evidence suggests that sex steroid therapy may increase LDL-C and TG levels and decrease HDL-C level in FTM individuals, whereas oral estrogens may increase TG levels in MTF individuals. Data about important patient outcomes remain sparse.

176 citations

Journal ArticleDOI
TL;DR: Sarcopenia is now clinically defined as a loss of muscle mass coupled with functional deterioration (either walking speed or distance or grip strength) and there is now a valid simple questionnaire to screen for sarcopenia, i.e., the SARC-F.
Abstract: Sarcopenia is now clinically defined as a loss of muscle mass coupled with functional deterioration (either walking speed or distance or grip strength). Based on the FRAX studies suggesting that the questions without bone mineral density can be used to screen for osteoporosis, there is now a valid simple questionnaire to screen for sarcopenia, i.e., the SARC-F. Numerous factors have been implicated in the pathophysiology of sarcopenia. These include genetic factors, mitochondrial defects, decreased anabolic hormones (e.g., testosterone, vitamin D, growth hormone and insulin growth hormone-1), inflammatory cytokine excess, insulin resistance, decreased protein intake and activity, poor blood flow to muscle and deficiency of growth derived factor-11. Over the last decade, there has been a remarkable increase in our understanding of the molecular biology of muscle, resulting in a marked increase in potential future targets for the treatment of sarcopenia. At present, resistance exercise, protein supplementation, and vitamin D have been established as the basic treatment of sarcopenia. High-dose testosterone increases muscle power and function, but has a number of potentially limiting side effects. Other drugs in clinical development include selective androgen receptor molecules, ghrelin agonists, myostatin antibodies, activin IIR antagonists, angiotensin converting enzyme inhibitors, beta antagonists, and fast skeletal muscle troponin activators. As sarcopenia is a major predictor of frailty, hip fracture, disability, and mortality in older persons, the development of drugs to treat it is eagerly awaited.

167 citations