scispace - formally typeset
Search or ask a question
Author

Fan Zhang

Other affiliations: Northern Illinois University
Bio: Fan Zhang is an academic researcher from Argonne National Laboratory. The author has contributed to research in topics: Scattering & Small-angle scattering. The author has an hindex of 7, co-authored 13 publications receiving 645 citations. Previous affiliations of Fan Zhang include Northern Illinois University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the spatial homogeneity and temporal stability of commercially available glassy carbon has been evaluated as a suitable standard for absolute intensity calibration of small-angle scattering (SAS) data.
Abstract: Absolute calibration of small-angle scattering (SAS) intensity data (measured in terms of the differential scattering cross section per unit sample volume per unit solid angle) is essential for many important aspects of quantitative SAS analysis, such as obtaining the number density, volume fraction, and specific surface area of the scatterers. It also enables scattering data from different instruments (light, X-ray, or neutron scattering) to be combined, and it can even be useful to detect the existence of artifacts in the experimental data. Different primary or secondary calibration methods are available. In the latter case, absolute intensity calibration requires a stable artifact with the necessary scattering profile. Glassy carbon has sometimes been selected as this intensity calibration standard. Here we review the spatial homogeneity and temporal stability of one type of commercially available glassy carbon that is being used as an intensity calibration standard at a number of SAS facilities. We demonstrate that glassy carbon is sufficiently homogeneous and stable during routine use to be relied upon as a suitable standard for absolute intensity calibration of SAS data.

345 citations

Journal ArticleDOI
TL;DR: In this article, the design and operation of a versatile ultra-small-angle X-ray scattering (USAXS) instrument at the Advanced Photon Source (APS) at Argonne National Laboratory are presented.
Abstract: The design and operation of a versatile ultra-small-angle X-ray scattering (USAXS) instrument at the Advanced Photon Source (APS) at Argonne National Laboratory are presented. The instrument is optimized for the high brilliance and low emittance of an APS undulator source. It has angular and energy resolutions of the order of 10−4, accurate and repeatable X-ray energy tunability over its operational energy range from 8 to 18 keV, and a dynamic intensity range of 108 to 109, depending on the configuration. It further offers quantitative primary calibration of X-ray scattering cross sections, a scattering vector range from 0.0001 to 1 A−1, and stability and reliability over extended running periods. Its operational configurations include one-dimensional collimated (slit-smeared) USAXS, two-dimensional collimated USAXS and USAXS imaging. A robust data reduction and data analysis package, which was developed in parallel with the instrument, is available and supported at the APS.

264 citations

Journal ArticleDOI
29 May 2008-Langmuir
TL;DR: By means of ultrasmall-angle X-ray scattering, the microsphere-nanoparticle separation distance as well as the number of nanoparticles and their lateral separation distance within the self-organized halos that form in these binary mixtures are quantified.
Abstract: A new colloidal stabilization mechanism, known as nanoparticle "haloing" (Tohver, V.; Smay, J. E.; Braem, A.; Braun, P. V.; Lewis, J. A. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, (16), 8950-8954), has been predicted theoretically and inferred experimentally in microsphere-nanoparticle mixtures that possess high charge and size asymmetry. The term "halo" implies the existence of a nonzero separation distance between the highly charged nanoparticles and the negligibly charged microspheres that they surround. By means of ultrasmall-angle X-ray scattering, we have quantified the microsphere-nanoparticle separation distance as well as the number of nanoparticles and their lateral separation distance within the self-organized halos that form in these binary mixtures.

47 citations

Journal ArticleDOI
TL;DR: In this paper, a general treatment of X-ray imaging contrast for ultra-small-angle Xray scattering (USAXS) imaging is presented; this approach makes use of phase propagation and dynamical diffraction theory to account quantitatively for the intensity distribution at the detector plane.
Abstract: A general treatment of X-ray imaging contrast for ultra-small-angle X-ray scattering (USAXS) imaging is presented; this approach makes use of phase propagation and dynamical diffraction theory to account quantitatively for the intensity distribution at the detector plane. Simulated results from a model system of micrometer-sized spherical SiO{sub 2} particles embedded in a polypropylene matrix show good agreement with experimental measurements. Simulations by means of a separate geometrical ray-tracing method also account for the features in the USAXS images and offer a complementary view of small-angle X-ray scattering as a contrast mechanism. The ray-tracing analysis indicates that refraction, in the form of Porod scattering, and, to a much lesser extent, X-ray reflection account for the USAXS imaging contrast.

15 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Developments and improvements of the ATSAS software suite for analysis of small-angle scattering data of biological macromolecules or nanoparticles are described.
Abstract: ATSAS is a comprehensive software suite for the analysis of small-angle scattering data from dilute solutions of biological macromolecules or nanoparticles. It contains applications for primary data processing and assessment, ab initio bead modelling, and model validation, as well as methods for the analysis of flexibility and mixtures. In addition, approaches are supported that utilize information from X-ray crystallography, nuclear magnetic resonance spectroscopy or atomistic homology modelling to construct hybrid models based on the scattering data. This article summarizes the progress made during the 2.5–2.8 ATSAS release series and highlights the latest developments. These include AMBIMETER, an assessment of the reconstruction ambiguity of experimental data; DATCLASS, a multiclass shape classification based on experimental data; SASRES, for estimating the resolution of ab initio model reconstructions; CHROMIXS, a convenient interface to analyse in-line size exclusion chromatography data; SHANUM, to evaluate the useful angular range in measured data; SREFLEX, to refine available high-resolution models using normal mode analysis; SUPALM for a rapid superposition of low- and high-resolution models; and SASPy, the ATSAS plugin for interactive modelling in PyMOL. All these features and other improvements are included in the ATSAS release 2.8, freely available for academic users from https://www.embl-hamburg.de/biosaxs/software.html.

1,135 citations

Journal ArticleDOI
TL;DR: There are a large number of methods for quantifying porosity, and an increasingly complex idea of what it means to do so as discussed by the authors, which is why it is important to quantify the relationships between porosity and storage, transport and rock properties, however, the pore structure must be measured and quantitatively described.
Abstract: Porosity plays a clearly important role in geology. It controls fluid storage in aquifers, oil and gas fields and geothermal systems, and the extent and connectivity of the pore structure control fluid flow and transport through geological formations, as well as the relationship between the properties of individual minerals and the bulk properties of the rock. In order to quantify the relationships between porosity, storage, transport and rock properties, however, the pore structure must be measured and quantitatively described. The overall importance of porosity, at least with respect to the use of rocks as building stone was recognized by TS Hunt in his “Chemical and Geological Essays” (1875, reviewed by JD Dana 1875) who noted: > “Other things being equal, it may properly be said that the value of a stone for building purposes is inversely as its porosity or absorbing power.” In a Geological Survey report prepared for the U.S. Atomic Energy Commission, Manger (1963) summarized porosity and bulk density measurements for sedimentary rocks. He tabulated more than 900 items of porosity and bulk density data for sedimentary rocks with up to 2,109 porosity determinations per item. Amongst these he summarized several early studies, including those of Schwarz (1870–1871), Cook (1878), Wheeler (1896), Buckley (1898), Gary (1898), Moore (1904), Fuller (1906), Sorby (1908), Hirschwald (1912), Grubenmann et al. (1915), and Kessler (1919), many of which were concerned with rocks and clays of commercial utility. There have, of course, been many more such determinations since that time. There are a large number of methods for quantifying porosity, and an increasingly complex idea of what it means to do so. Manger (1963) listed the techniques by which the porosity determinations he summarized were made. He separated these into seven methods for …

788 citations

Journal ArticleDOI
TL;DR: Nika is an Igor Pro-based package for correction, calibration and reduction of two-dimensional area-detector data into one-dimensional data (`lineouts'), open source and highly flexible.
Abstract: Nika is an Igor Pro-based package for correction, calibration and reduction of two-dimensional area-detector data into one-dimensional data (`lineouts'). It is free (although the user needs a paid license for Igor Pro), open source and highly flexible. While typically used for small-angle X-ray scattering (SAXS) data, it can also be used for grazing-incidence SAXS data, wide-angle diffraction data and even small-angle neutron scattering data. It has been widely available to the user community since about 2005, and it is currently used at the SAXS instruments of selected large-scale facilities as their main data reduction package. It is, however, also suitable for desktop instruments when the manufacturer's software is not available or appropriate. Since it is distributed as source code, it can be scrutinized, verified and modified by users to suit their needs.

768 citations

Journal ArticleDOI
TL;DR: This work provides a theoretical foundation for X-ray scattering, considering both form factor and structure factor, as well as the use of correlation functions, which may be used to determine a particle's size, size distribution, shape, and organization into hierarchical structures.
Abstract: X-ray scattering is a structural characterization tool that has impacted diverse fields of study. It is unique in its ability to examine materials in real time and under realistic sample environments, enabling researchers to understand morphology at nanometer and angstrom length scales using complementary small and wide angle X-ray scattering (SAXS, WAXS), respectively. Herein, we focus on the use of SAXS to examine nanoscale particulate systems. We provide a theoretical foundation for X-ray scattering, considering both form factor and structure factor, as well as the use of correlation functions, which may be used to determine a particle’s size, size distribution, shape, and organization into hierarchical structures. The theory is expanded upon with contemporary use cases. Both transmission and reflection (grazing incidence) geometries are addressed, as well as the combination of SAXS with other X-ray and non-X-ray characterization tools. We conclude with an examination of several key areas of research w...

611 citations

Journal ArticleDOI
TL;DR: BioXTAS RAW is a graphical-user-interface-based free open-source Python program for reduction and analysis of small-angle X-ray solution scattering (SAXS) data, including size-exclusion chromatography coupled SAXS data.
Abstract: BioXTAS RAW is a graphical-user-interface-based free open-source Python program for reduction and analysis of small-angle X-ray solution scattering (SAXS) data. The software is designed for biological SAXS data and enables creation and plotting of one-dimensional scattering profiles from two-dimensional detector images, standard data operations such as averaging and subtraction and analysis of radius of gyration and molecular weight, and advanced analysis such as calculation of inverse Fourier transforms and envelopes. It also allows easy processing of inline size-exclusion chromatography coupled SAXS data and data deconvolution using the evolving factor analysis method. It provides an alternative to closed-source programs such as Primus and ScAtter for primary data analysis. Because it can calibrate, mask and integrate images it also provides an alternative to synchrotron beamline pipelines that scientists can install on their own computers and use both at home and at the beamline.

367 citations