scispace - formally typeset
Search or ask a question
Author

Fang-Fang Ren

Bio: Fang-Fang Ren is an academic researcher from Nanjing University. The author has contributed to research in topics: Avalanche photodiode & Breakdown voltage. The author has an hindex of 22, co-authored 149 publications receiving 1844 citations. Previous affiliations of Fang-Fang Ren include Singapore Science Park & Australian National University.


Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of solar-blind photodetectors based on gallium oxide (Ga2O3) materials in various forms of bulk single crystal, epitaxial films, nanostructures, and their ternary alloys is presented in this paper.
Abstract: Solar-blind photodetectors are of great interest to a wide range of industrial, civil, environmental, and biological applications. As one of the emerging ultrawide-bandgap semiconductors, gallium oxide (Ga2O3) exhibits unique advantages over other wide-bandgap semiconductors, especially in developing high-performance solar-blind photodetectors. This paper comprehensively reviews the latest progresses of solar-blind photodetectors based on Ga2O3 materials in various forms of bulk single crystal, epitaxial films, nanostructures, and their ternary alloys. The basic working principles of photodetectors and the fundamental properties and synthesis of Ga2O3, as well as device processing developments, have been briefly summarized. A special focus is to address the physical mechanism for commonly observed huge photoconductive gains. Benefitting from the rapid development in material epitaxy and device processes, Ga2O3-based solar-blind detectors represent to date one of the most prospective solutions for UV detection technology towards versatile applications.

306 citations

Journal ArticleDOI
TL;DR: Single crystalline α-Ga2O3 epilayers are achieved on nonpolar ZnO (112̅0) substrates for the first time and a high performance Au/α-Ga3/ZnO isotype heterostructure-based Schottky barrier avalanche diode is demonstrated, holding promise for developing high performance solar-blind photodetectors.
Abstract: The metastable α-phase Ga2O3 is an emerging material for developing solar-blind photodetectors and power electronic devices toward civil and military applications. Despite its superior physical properties, the high quality epitaxy of metastable phase α-Ga2O3 remains challenging. To this end, single crystalline α-Ga2O3 epilayers are achieved on nonpolar ZnO (1120) substrates for the first time and a high performance Au/α-Ga2O3/ZnO isotype heterostructure-based Schottky barrier avalanche diode is demonstrated. The device exhibits self-powered functions with a dark current lower than 1 pA, a UV/visible rejection ratio of 103 and a detectivity of 9.66 × 1012 cm Hz1/2 W–1. Dual responsivity bands with cutoff wavelengths at 255 and 375 nm are observed with their peak responsivities of 0.50 and 0.071 A W–1 at −5 V, respectively. High photoconductive gain at low bias is governed by a barrier lowing effect at the Au/Ga2O3 and Ga2O3/ZnO heterointerfaces. The device also allows avalanche multiplication processes in...

141 citations

Journal ArticleDOI
Hehe Gong1, Xianhui Chen1, Yeming Xu1, Fang-Fang Ren1, S.L. Gu1, Jiandong Ye1 
TL;DR: In this paper, high performance vertical NiO/β-Ga2O3 p-n heterojunction diodes without any electric field managements were reported, showing a low leakage current density and a high rectification ratio over 1010 (at ±3 V) even operated at temperature of 400 K, indicating their excellent thermal stability and operation capability at high temperature.
Abstract: In this Letter, high-performance vertical NiO/β-Ga2O3 p–n heterojunction diodes without any electric field managements were reported. The devices show a low leakage current density and a high rectification ratio over 1010 (at ±3 V) even operated at temperature of 400 K, indicating their excellent thermal stability and operation capability at high temperature. Given a type-II band alignment of NiO/β-Ga2O3, carrier transport is dominated by the interface recombination at forward bias, while the defect-mediated variable range hopping conduction is identified upon strong reverse electric field. By using the double-layer design of NiO with a reduced hole concentration of 5.1 × 1017 cm−3, the diode demonstrates an improved breakdown voltage (Vb) of 1.86 kV and a specific on-resistance (Ron,sp) of 10.6 mΩ cm2, whose power figure of merit (Vb2/Ron,sp) has reached 0.33 GW/cm2. The high breakdown voltage and low leakage current are outperforming other reported Ga2O3 based p–n heterojunctions and Schottky barrier diodes without field plate and edge termination structures. TCAD simulation indicates that the improved Vb is mainly attributed to the suppression of electric field crowding due to the decreased hole concentration in NiO. Such bipolar heterojunction is expected to be an alternative to increase the breakdown characteristics of β-Ga2O3 power devices.

120 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the State Key Program for Basic Research of China under Grant Nos. 2010CB327504,======2011CB922100, 2011CB301900; the National Natural Science Museum of China and the China Natural Science Foundation under Grant No. 60825401,======60936004, 11104130, BK2011556, and BK 2011050.
Abstract: This work was supported by the State Key Program for Basic Research of China under Grant Nos. 2010CB327504, 2011CB922100, 2011CB301900; the National Natural Science Foundation of China under Grant Nos. 60825401, 60936004, 11104130, BK2011556, and BK2011050.

86 citations

Journal ArticleDOI
TL;DR: This work exploits the idea of split bull's eye antenna for a nanometer germanium photodetector operating at a standard communication wavelength of 1310 nm, and paves the way for the future development of low-cost, high-density, and high-speed CMOS-compatiblegermanium-based optoelectronic devices.
Abstract: Bull's eye antennas are capable of efficiently collecting and concentrating optical signals into an ultrasmall area, offering an excellent solution to break the bottleneck between speed and photoresponse in subwavelength photodetectors. Here, we exploit the idea of split bull's eye antenna for a nanometer germanium photodetector operating at a standard communication wavelength of 1310 nm. The nontraditional plasmonic metal aluminum has been implemented in the resonant antenna structure fabricated by standard complementary metal-oxide-semiconductor (CMOS) processing. A significant enhancement in photoresponse could be achieved over the conventional bull's eye scheme due to an increased optical near-field in the active region. Moreover, with this novel antenna design the effective grating area could be significantly reduced without sacrificing device performance. This work paves the way for the future development of low-cost, high-density, and high-speed CMOS-compatible germanium-based optoelectronic devices.

84 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work aims to demonstrate the efforts towards in-situ applicability of EMMARM, which aims to provide real-time information about the physical properties of Macromolecular Synthesis and Functionalization.
Abstract: Department of Chemistry, William Mong Institute of Nano Science and Technology, Bioengineering Graduate Program, The Hong Kong University of Science & Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China, and Department of Polymer Science and Engineering, Key Laboratory of Macromolecular Synthesis and Functionalization of the Ministry of Education, Institute of Biomedical Macromolecules, Zhejiang University, Hangzhou 310027, China

1,042 citations

Book ChapterDOI
27 Jan 2010

878 citations

Journal ArticleDOI
TL;DR: In this work, pure stereoisomers of a TPE derivative named 1,2-bis{4-[1-(6-phenoxyhexyl)-4-(1,2,3-triazol)yl]phenyl}-1, 2-diphenylethene (BPHTATPE) are successfully synthesized and both isomers show remarkable AIE effect and high fluorescence quantum yield in the solid state.
Abstract: It has been difficult to decipher the mechanistic issue whether E/Z isomerization is involved in the aggregation-induced emission (AIE) process of a tetraphenylethene (TPE) derivative, due to the difficulty in the synthesis of its pure E and Z conformers. In this work, pure stereoisomers of a TPE derivative named 1,2-bis{4-[1-(6-phenoxyhexyl)-4-(1,2,3-triazol)yl]phenyl}-1,2-diphenylethene (BPHTATPE) are successfully synthesized. Both isomers show remarkable AIE effect (αAIE ≥ 322) and high fluorescence quantum yield in the solid state (ΦF 100%). The conformers readily undergo E/Z isomerization upon exposure to a powerful UV light and treatment at a high temperature (>200 °C). Such conformational change, however, is not observed under normal fluorescence spectrum measurement conditions, excluding the involvement of the E/Z isomerization in the AIE process of the TPE-based luminogen. The molecules of (E)-BPHTATPE self-organize into ordered one-dimensional nanostructures such as microfibers and nanorods that...

529 citations

Journal ArticleDOI
TL;DR: This review focuses on top-down nanofabrication techniques for engineering metallic nanostructures, along with computational and experimental characterization techniques, for a variety of current and emerging applications.
Abstract: Metallic nanostructures now play an important role in many applications. In particular, for the emerging fields of plasmonics and nanophotonics, the ability to engineer metals on nanometric scales allows the development of new devices and the study of exciting physics. This review focuses on top-down nanofabrication techniques for engineering metallic nanostructures, along with computational and experimental characterization techniques. A variety of current and emerging applications are also covered.

496 citations

Journal ArticleDOI
TL;DR: Flexible metal oxide semiconductor thin-film transistors (TFTs) are considered the most promising technology for tomorrow's electronics as discussed by the authors and are therefore considered to be a promising technology in the field of flexible electronics.
Abstract: The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In particular, the realization of large-area digital circuitry like flexible near field communication tags and analog integrated circuits such as bendable operational amplifiers is presented. The last topic of this review is devoted for emerging flexible electronic systems, from foldable displays, power transmission elements to integrated systems for large-area sensing and data storage and transmission. Finally, the conclusions are drawn and an outlook over the field with a prediction for the future is provided.

472 citations