scispace - formally typeset
Search or ask a question
Author

Fang Jin

Bio: Fang Jin is an academic researcher from University of California, Irvine. The author has contributed to research in topics: Tumor progression & Parametric statistics. The author has an hindex of 4, co-authored 6 publications receiving 842 citations. Previous affiliations of Fang Jin include University of Texas Health Science Center at Houston & University of California.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of multiscale modelling focusing on the growth phase of tumours and bypassing the initial stage of tumourigenesis, and limit the scope further by considering models of tumor progression that do not distinguish tumour cells by their age and do not consider immune system interactions nor do they describe models of therapy.
Abstract: Despite major scientific, medical and technological advances over the last few decades, a cure for cancer remains elusive. The disease initiation is complex, and including initiation and avascular growth, onset of hypoxia and acidosis due to accumulation of cells beyond normal physiological conditions, inducement of angiogenesis from the surrounding vasculature, tumour vascularization and further growth, and invasion of surrounding tissue and metastasis. Although the focus historically has been to study these events through experimental and clinical observations, mathematical modelling and simulation that enable analysis at multiple time and spatial scales have also complemented these efforts. Here, we provide an overview of this multiscale modelling focusing on the growth phase of tumours and bypassing the initial stage of tumourigenesis. While we briefly review discrete modelling, our focus is on the continuum approach. We limit the scope further by considering models of tumour progression that do not distinguish tumour cells by their age. We also do not consider immune system interactions nor do we describe models of therapy. We do discuss hybrid-modelling frameworks, where the tumour tissue is modelled using both discrete (cell-scale) and continuum (tumour-scale) elements, thus connecting the micrometre to the centimetre tumour scale. We review recent examples that incorporate experimental data into model parameters. We show that recent mathematical modelling predicts that transport limitations of cell nutrients, oxygen and growth factors may result in cell death that leads to morphological instability, providing a mechanism for invasion via tumour fingering and fragmentation. These conditions induce selection pressure for cell survivability, and may lead to additional genetic mutations. Mathematical modelling further shows that parameters that control the tumour mass shape also control its ability to invade. Thus, tumour morphology may serve as a predictor of invasiveness and treatment prognosis.

541 citations

Journal ArticleDOI
TL;DR: Heterogeneity in the physiologically complex tumor microenvironment, caused by non-uniform distribution of oxygen, cell nutrients, and metabolites, as well as phenotypic changes affecting cellular-scale parameters, can be quantitatively linked to the tumor macro-scale as a mechanism that promotes morphological instability.

234 citations

Journal ArticleDOI
TL;DR: This work establishes a framework for monitoring system perturbation towards development of therapeutic strategies and correlation to clinical outcome for prognosis by quantifying the link between the tumor boundary morphology and the invasive phenotype.
Abstract: Clinical outcome prognostication in oncology is a guiding principle in therapeutic choice. A wealth of qualitative empirical evidence links disease progression with tumor morphology, histopathology, invasion, and associated molecular phenomena. However, the quantitative contribution of each of the known parameters in this progression remains elusive. Mathematical modeling can provide the capability to quantify the connection between variables governing growth, prognosis, and treatment outcome. By quantifying the link between the tumor boundary morphology and the invasive phenotype, this work provides a quantitative tool for the study of tumor progression and diagnostic/prognostic applications. This establishes a framework for monitoring system perturbation towards development of therapeutic strategies and correlation to clinical outcome for prognosis. Major Findings: We apply a biologically founded, multiscale, mathematical model to identify and quantify tumor biologic and molecular properties relating to clinical and morphological phenotype and to demonstrate that tumor growth and invasion are predictable processes governed by biophysical laws, and regulated by heterogeneity in phenotypic, genotypic, and microenvironmental parameters. This heterogeneity drives migration and proliferation of more aggressive clones up cell substrate gradients within and beyond the central tumor mass, while often also inducing loss of cell adhesion. The model predicts that this process triggers a gross morphologic instability that leads to tumor invasion via individual cells, cell chains, strands, or detached clusters infiltrating into adjacent tissue producing the typical morphologic patterns seen, e.g., in the histopathology of glioblastoma multiforme. The model further predicts that these different morphologies of infiltration correspond to different stages of tumor progression regulated by heterogeneity.

135 citations

Journal ArticleDOI
TL;DR: A novel approach based on a Gaussian process model that addresses the two issues jointly of parametric regression and stochastic nature of most biological simulations, and the existence of a potentially large number of other factors that affect the simulation outputs is proposed.
Abstract: Finding optimal parameters for simulating biological systems is usually a very difficult and expensive task in systems biology. Brute force searching is infeasible in practice because of the huge (often infinite) search space. In this article, we propose predicting the parameters efficiently by learning the relationship between system outputs and parameters using regression. However, the conventional parametric regression models suffer from two issues, thus are not applicable to this problem. First, restricting the regression function as a certain fixed type (e.g. linear, polynomial, etc.) introduces too strong assumptions that reduce the model flexibility. Second, conventional regression models fail to take into account the fact that a fixed parameter value may correspond to multiple different outputs due to the stochastic nature of most biological simulations, and the existence of a potentially large number of other factors that affect the simulation outputs. We propose a novel approach based on a Gaussian process model that addresses the two issues jointly. We apply our approach to a tumor vessel growth model and the feedback Wright–Fisher model. The experimental results show that our method can predict the parameter values of both of the two models with high accuracy. © 2012 Wiley Periodicals, Inc. Statistical Analysis and Data Mining, 2012 © 2012 Wiley Periodicals, Inc.

9 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The recent expansion of quantitative models addresses many questions regarding tumour initiation, progression and metastases as well as intra-tumour heterogeneity, treatment responses and resistance.
Abstract: Mathematical modelling approaches have become increasingly abundant in cancer research. The complexity of cancer is well suited to quantitative approaches as it provides challenges and opportunities for new developments. In turn, mathematical modelling contributes to cancer research by helping to elucidate mechanisms and by providing quantitative predictions that can be validated. The recent expansion of quantitative models addresses many questions regarding tumour initiation, progression and metastases as well as intra-tumour heterogeneity, treatment responses and resistance. Mathematical models can complement experimental and clinical studies, but also challenge current paradigms, redefine our understanding of mechanisms driving tumorigenesis and shape future research in cancer biology.

563 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of multiscale modelling focusing on the growth phase of tumours and bypassing the initial stage of tumourigenesis, and limit the scope further by considering models of tumor progression that do not distinguish tumour cells by their age and do not consider immune system interactions nor do they describe models of therapy.
Abstract: Despite major scientific, medical and technological advances over the last few decades, a cure for cancer remains elusive. The disease initiation is complex, and including initiation and avascular growth, onset of hypoxia and acidosis due to accumulation of cells beyond normal physiological conditions, inducement of angiogenesis from the surrounding vasculature, tumour vascularization and further growth, and invasion of surrounding tissue and metastasis. Although the focus historically has been to study these events through experimental and clinical observations, mathematical modelling and simulation that enable analysis at multiple time and spatial scales have also complemented these efforts. Here, we provide an overview of this multiscale modelling focusing on the growth phase of tumours and bypassing the initial stage of tumourigenesis. While we briefly review discrete modelling, our focus is on the continuum approach. We limit the scope further by considering models of tumour progression that do not distinguish tumour cells by their age. We also do not consider immune system interactions nor do we describe models of therapy. We do discuss hybrid-modelling frameworks, where the tumour tissue is modelled using both discrete (cell-scale) and continuum (tumour-scale) elements, thus connecting the micrometre to the centimetre tumour scale. We review recent examples that incorporate experimental data into model parameters. We show that recent mathematical modelling predicts that transport limitations of cell nutrients, oxygen and growth factors may result in cell death that leads to morphological instability, providing a mechanism for invasion via tumour fingering and fragmentation. These conditions induce selection pressure for cell survivability, and may lead to additional genetic mutations. Mathematical modelling further shows that parameters that control the tumour mass shape also control its ability to invade. Thus, tumour morphology may serve as a predictor of invasiveness and treatment prognosis.

541 citations

Journal ArticleDOI
TL;DR: In this review, the most recent and important multiscale cancer modeling works that have successfully established a mechanistic link between different biological scales are introduced and biophysical, biochemical, and biomechanical factors are considered in these models.
Abstract: Simulating cancer behavior across multiple biological scales in space and time, i.e., multiscale cancer modeling, is increasingly being recognized as a powerful tool to refine hypotheses, focus experiments, and enable more accurate predictions. A growing number of examples illustrate the value of this approach in providing quantitative insights in the initiation, progression, and treatment of cancer. In this review, we introduce the most recent and important multiscale cancer modeling works that have successfully established a mechanistic link between different biological scales. Biophysical, biochemical, and biomechanical factors are considered in these models. We also discuss innovative, cutting-edge modeling methods that are moving predictive multiscale cancer modeling toward clinical application. Furthermore, because the development of multiscale cancer models requires a new level of collaboration among scientists from a variety of fields such as biology, medicine, physics, mathematics, engineering, and computer science, an innovative Web-based infrastructure is needed to support this growing community.

423 citations

Journal ArticleDOI
TL;DR: Progress in mathematical modelling of cancer over the past 50 years is charted, highlighting the different theoretical approaches that have been used to dissect the disease and the insights that have arisen.
Abstract: This Timeline article charts progress in mathematical modelling of cancer over the past 50 years, highlighting the different theoretical approaches that have been used to dissect the disease and the insights that have arisen. Although most of this research was conducted with little involvement from experimentalists or clinicians, there are signs that the tide is turning and that increasing numbers of those involved in cancer research and mathematical modellers are recognizing that by working together they might more rapidly advance our understanding of cancer and improve its treatment.

407 citations