scispace - formally typeset
Search or ask a question
Author

Fang Yang

Bio: Fang Yang is an academic researcher. The author has contributed to research in topics: Common variable immunodeficiency & Medicine. The author has an hindex of 4, co-authored 4 publications receiving 299 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The CVID phenotype in these families is caused by NF-κB1 p50 haploinsufficiency, with a Dutch-Australian CVID-affected family identified a NFKB1 heterozygous splice-donor-site mutation, causing in-frame skipping of exon 8.
Abstract: Common variable immunodeficiency (CVID), characterized by recurrent infections, is the most prevalent symptomatic antibody deficiency. In ∼90% of CVID-affected individuals, no genetic cause of the disease has been identified. In a Dutch-Australian CVID-affected family, we identified a NFKB1 heterozygous splice-donor-site mutation (c.730+4A>G), causing in-frame skipping of exon 8. NFKB1 encodes the transcription-factor precursor p105, which is processed to p50 (canonical NF-κB pathway). The altered protein bearing an internal deletion (p.Asp191_Lys244delinsGlu; p105ΔEx8) is degraded, but is not processed to p50ΔEx8. Altered NF-κB1 proteins were also undetectable in a German CVID-affected family with a heterozygous in-frame exon 9 skipping mutation (c.835+2T>G) and in a CVID-affected family from New Zealand with a heterozygous frameshift mutation (c.465dupA) in exon 7. Given that residual p105 and p50—translated from the non-mutated alleles—were normal, and altered p50 proteins were absent, we conclude that the CVID phenotype in these families is caused by NF-κB1 p50 haploinsufficiency.

193 citations

Journal ArticleDOI
TL;DR: This case suggests that a compound heterozygous mutation in CECR1 (encoding adenosine deaminase 2, ADA2) that segregated in the two affected children should also be considered when evaluating patients with antibody deficiencies and immune dysregulation syndromes.
Abstract: Determining the monogenic cause of antibody deficiency and immune dysregulation in a non-consanguineous family with healthy parents, two affected children, and one unaffected child. Whole Exome Sequencing (WES) was performed in the index family. WES results were confirmed by Sanger Sequencing. Dried plasma spots of the male patient and his mother were analyzed for ADA2 enzymatic activity. Following data analysis of WES, we found a compound heterozygous mutation in CECR1 (encoding adenosine deaminase 2, ADA2) that segregated in the two affected children. Enzyme activity measurement confirmed a severely diminished ADA2 activity in our patient. The 32 year old index patient was suffering from recurrent respiratory infections and was previously diagnosed with common variable immunodeficiency (CVID), showing no signs of vasculitis. His sister had a systemic lupus erythematosus (SLE)-like phenotype and died at age 17. Deficiency of ADA2 (DADA2) has been reported to cause vasculopathy and early-onset stroke. Our case suggests that it should also be considered when evaluating patients with antibody deficiencies and immune dysregulation syndromes.

82 citations

Journal ArticleDOI
TL;DR: It is demonstrated that DCLRE1C mutations can cause a phenotype presenting as only antibody deficiency, which broadens the clinical spectrum associated with ARTEMIS mutations.
Abstract: Null mutations in genes involved in V(D)J recombination cause a block in B- and T-cell development, clinically presenting as severe combined immunodeficiency (SCID). Hypomorphic mutations in the non-homologous end-joining gene DCLRE1C (encoding ARTEMIS) have been described to cause atypical SCID, Omenn syndrome, Hyper IgM syndrome and inflammatory bowel disease-all with severely impaired T-cell immunity. By whole-exome sequencing, we investigated the molecular defect in a consanguineous family with three children clinically diagnosed with antibody deficiency. We identified perfectly segregating homozygous variants in DCLRE1C in three index patients with recurrent respiratory tract infections, very low B-cell numbers and serum IgA levels. In patients, decreased colony survival after irradiation, impaired proliferative response and reduced counts of naive T cells were observed in addition to a restricted T-cell receptor repertoire, increased palindromic nucleotides in the complementarity determining regions 3 and long stretches of microhomology at switch junctions. Defective V(D)J recombination was complemented by wild-type ARTEMIS protein in vitro. Subsequently, homozygous or compound heterozygous DCLRE1C mutations were identified in nine patients from the same geographic region. We demonstrate that DCLRE1C mutations can cause a phenotype presenting as only antibody deficiency. This novel association broadens the clinical spectrum associated with ARTEMIS mutations. Clinicians should consider the possibility that an immunodeficiency with a clinically mild initial presentation could be a combined immunodeficiency, so as to provide appropriate care for affected patients.

58 citations

Journal ArticleDOI
TL;DR: A monogenic defect leading to a specific PC deficiency in human subjects is described, expanding the knowledge about the pathogenesis of antibody deficiencies.
Abstract: Background Primary antibody deficiencies (PADs) are the most frequent primary immunodeficiencies in human subjects. The genetic causes of PADs are largely unknown. Sec61 translocon alpha 1 subunit (SEC61A1) is the major subunit of the Sec61 complex, which is the main polypeptide-conducting channel in the endoplasmic reticulum membrane. SEC61A1 is a target gene of spliced X-box binding protein 1 and strongly induced during plasma cell (PC) differentiation. Objective We identified a novel genetic defect and studied its pathologic mechanism in 11 patients from 2 unrelated families with PADs. Methods Whole-exome and targeted sequencing were conducted to identify novel genetic mutations. Functional studies were carried out ex vivo in primary cells of patients and in vitro in different cell lines to assess the effect of SEC61A1 mutations on B-cell differentiation and survival. Results We investigated 2 families with patients with hypogammaglobulinemia, severe recurrent respiratory tract infections, and normal peripheral B- and T-cell subpopulations. On in vitro stimulation, B cells showed an intrinsic deficiency to develop into PCs. Genetic analysis and targeted sequencing identified novel heterozygous missense (c.254T>A, p.V85D) and nonsense (c.1325G>T, p.E381*) mutations in SEC61A1 , segregating with the disease phenotype. SEC61A1-V85D was deficient in cotranslational protein translocation, and it disturbed the cellular calcium homeostasis in HeLa cells. Moreover, SEC61A1-V85D triggered the terminal unfolded protein response in multiple myeloma cell lines. Conclusion We describe a monogenic defect leading to a specific PC deficiency in human subjects, expanding our knowledge about the pathogenesis of antibody deficiencies.

56 citations

Journal ArticleDOI
TL;DR: In this paper , the authors summarize the recently available human gut virome databases and discuss their features, procedures, and challenges with the intention to provide a reference to researchers to use while choosing a profiling database.

5 citations


Cited by
More filters
Journal ArticleDOI
12 Jan 2017-Cell
TL;DR: The NF-κB was discovered 30 years ago as a rapidly inducible transcription factor and has been found to have a broad role in gene induction in diverse cellular responses, particularly throughout the immune system as mentioned in this paper.

1,303 citations

Journal ArticleDOI
TL;DR: This Review discusses the most recent findings regarding the relative involvement of the different NHEJ proteins in the repair of various DNA-end configurations and the relevance of these different pathways to human disease.
Abstract: DNA double-strand breaks (DSBs) are the most dangerous type of DNA damage because they can result in the loss of large chromosomal regions. In all mammalian cells, DSBs that occur throughout the cell cycle are repaired predominantly by the non-homologous DNA end joining (NHEJ) pathway. Defects in NHEJ result in sensitivity to ionizing radiation and the ablation of lymphocytes. The NHEJ pathway utilizes proteins that recognize, resect, polymerize and ligate the DNA ends in a flexible manner. This flexibility permits NHEJ to function on a wide range of DNA-end configurations, with the resulting repaired DNA junctions often containing mutations. In this Review, we discuss the most recent findings regarding the relative involvement of the different NHEJ proteins in the repair of various DNA-end configurations. We also discuss the shunting of DNA-end repair to the auxiliary pathways of alternative end joining (a-EJ) or single-strand annealing (SSA) and the relevance of these different pathways to human disease.

1,061 citations

Journal ArticleDOI
TL;DR: This report documents the key clinical and laboratory features of 430 inborn errors of immunity, including 64 gene defects that have either been discovered in the past 2 years since the previous update (published January 2018) or were characterized earlier but have since been confirmed or expanded upon in subsequent studies.
Abstract: We report the updated classification of Inborn Errors of Immunity/Primary Immunodeficiencies, compiled by the International Union of Immunological Societies Expert Committee. This report documents the key clinical and laboratory features of 430 inborn errors of immunity, including 64 gene defects that have either been discovered in the past 2 years since the previous update (published January 2018) or were characterized earlier but have since been confirmed or expanded upon in subsequent studies. The application of next-generation sequencing continues to expedite the rapid identification of novel gene defects, rare or common; broaden the immunological and clinical phenotypes of conditions arising from known gene defects and even known variants; and implement gene-specific therapies. These advances are contributing to greater understanding of the molecular, cellular, and immunological mechanisms of disease, thereby enhancing immunological knowledge while improving the management of patients and their families. This report serves as a valuable resource for the molecular diagnosis of individuals with heritable immunological disorders and also for the scientific dissection of cellular and molecular mechanisms underlying inborn errors of immunity and related human diseases.

825 citations

Journal ArticleDOI
TL;DR: This review attempts to summarize the current knowledge and updates on the mechanisms of NF-κB pathway regulation and the potential therapeutic application of inhibition of NF -κB signaling in cancer and inflammatory diseases.
Abstract: NF-κB pathway consists of canonical and non-canonical pathways. The canonical NF-κB is activated by various stimuli, transducing a quick but transient transcriptional activity, to regulate the expression of various proinflammatory genes and also serve as the critical mediator for inflammatory response. Meanwhile, the activation of the non-canonical NF-κB pathway occurs through a handful of TNF receptor superfamily members. Since the activation of this pathway involves protein synthesis, the kinetics of non-canonical NF-κB activation is slow but persistent, in concordance with its biological functions in the development of immune cell and lymphoid organ, immune homeostasis and immune response. The activation of the canonical and non-canonical NF-κB pathway is tightly controlled, highlighting the vital roles of ubiquitination in these pathways. Emerging studies indicate that dysregulated NF-κB activity causes inflammation-related diseases as well as cancers, and NF-κB has been long proposed as the potential target for therapy of diseases. This review attempts to summarize our current knowledge and updates on the mechanisms of NF-κB pathway regulation and the potential therapeutic application of inhibition of NF-κB signaling in cancer and inflammatory diseases.

408 citations

Book ChapterDOI
TL;DR: An overview of the studies that form the basis of the understanding of the role of NF-κB subunits and their regulators in controlling inflammation is provided and the emerging importance of posttranslational modifications in the regulation of inflammation is described.
Abstract: The NF-κB transcription factor was discovered 30 years ago and has since emerged as the master regulator of inflammation and immune homeostasis. It achieves this status by means of the large number of important pro- and antiinflammatory factors under its transcriptional control. NF-κB has a central role in inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, and autoimmunity, as well as diseases comprising a significant inflammatory component such as cancer and atherosclerosis. Here, we provide an overview of the studies that form the basis of our understanding of the role of NF-κB subunits and their regulators in controlling inflammation. We also describe the emerging importance of posttranslational modifications of NF-κB in the regulation of inflammation, and highlight the future challenges faced by researchers who aim to target NF-κB transcriptional activity for therapeutic benefit in treating chronic inflammatory diseases.

290 citations