scispace - formally typeset
Search or ask a question
Author

Fang Zheng Peng

Bio: Fang Zheng Peng is an academic researcher from Florida State University. The author has contributed to research in topics: Inverter & Z-source inverter. The author has an hindex of 87, co-authored 380 publications receiving 43073 citations. Previous affiliations of Fang Zheng Peng include Oak Ridge National Laboratory & Nagaoka University of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, three different inverters: conventional PWM, dc-dc boosted PWM and Z-source inverter were investigated and compared for fuel cell vehicle application, and an example of the total switching device power, requirement of passive components, the constant power speed ratio, and the efficiencies of the different in-vivo inverters for fuelcell vehicle powered by the same fuel cell were conducted.
Abstract: In this paper, three different inverters: conventional pulsewidth modulation (PWM) inverter, dc-dc boosted PWM inverter, and Z-source inverter were investigated and compared for fuel cell vehicle application. Total switching device power, passive components requirement, and constant power speed ratio of each of these inverters were calculated. For purposes of comparison, an example of the total switching device power, requirement of passive components, the constant power speed ratio, and the efficiencies of the different inverters for fuel cell vehicle powered by the same fuel cell were conducted. The comparisons show that the Z-source inverter is very promising in applications when the boost ratio is low (1-2).

430 citations

Journal ArticleDOI
TL;DR: In this article, 22 configurations of power filters for the harmonic compensation of nonlinear loads are presented, some of which are novel and result from the newly discovered characteristics of non linear loads and circuitry duality, while the others are well known and used in practice.
Abstract: This article presents 22 configurations of power filters for the harmonic compensation of nonlinear loads. Some of these configurations are novel and result from the newly discovered characteristics of nonlinear loads and circuitry duality, while the others are well known and used in practice. Nonlinear loads can be characterized into two types of harmonic sources: current-source nonlinear loads and voltage-source nonlinear loads. These two types of harmonic sources have completely distinctive and dual properties and characteristics. Based on their properties and characteristics, the current-source nonlinear loads and voltage-source nonlinear loads have their own suitable filter configurations, respectively.

396 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a Z-source inverter system and control for general-purpose motor drives, which employs a unique LC network in the dc link and a small capacitor on the ac side of the diode front end.
Abstract: This paper presents a Z-source inverter system and control for general-purpose motor drives. The Z-source inverter system employs a unique LC network in the dc link and a small capacitor on the ac side of the diode front end. By controlling the shoot-through duty cycle, the Z-source can produce any desired output ac voltage, even greater than the line voltage. As a result, the new Z-source inverter system provides ride-through capability during voltage sags, reduces line harmonics, improves power factor and reliability, and extends output voltage range. Analysis, simulation, and experimental results will be presented to demonstrate these new features.

390 citations

Journal ArticleDOI
TL;DR: This paper analyzes the stability problem of the grid-connected voltage-source inverter (VSI) with LC filters, which demonstrates that the possible grid-impedance variations have a significant influence on the system stability when conventional proportional-integrator (PI) controller is used for grid current control.
Abstract: This paper analyzes the stability problem of the grid-connected voltage-source inverter (VSI) with LC filters, which demonstrates that the possible grid-impedance variations have a significant influence on the system stability when conventional proportional-integrator (PI) controller is used for grid current control. As the grid inductive impedance increases, the low-frequency gain and bandwidth of the PI controller have to be decreased to keep the system stable, thus degrading the tracking performance and disturbance rejection capability. To deal with this stability problem, an H∞ controller with explicit robustness in terms of grid-impedance variations is proposed to incorporate the desired tracking performance and the stability margin. By properly selecting the weighting functions, the synthesized H∞ controller exhibits high gains at the vicinity of the line frequency, similar to the traditional proportional-resonant controller; meanwhile, it has enough high-frequency attenuation to keep the control loop stable. An inner inverter-output-current loop with high bandwidth is also designed to get better disturbance rejection capability. The selection of weighting functions, inner inverter-output-current loop design, and system disturbance rejection capability are discussed in detail in this paper. Both simulation and experimental results of the proposed H∞ controller as well as the conventional PI controller are given and compared, which validates the performance of the proposed control scheme.

388 citations

Journal ArticleDOI
TL;DR: Simulation and experimental results show how to operate this converter in order to maintain equal charge/discharge rates from the DC sources (batteries, capacitors, or fuel cells) in an HEV.
Abstract: This paper presents transformerless multilevel converters as an application for high-power hybrid electric vehicle (HEV) motor drives. Multilevel converters: (1) can generate near-sinusoidal voltages with only fundamental frequency switching; (2) have almost no electromagnetic interference or common-mode voltage; and (3) make an HEV more accessible/safer and open wiring possible for most of an HEV's power system. The cascade inverter is a natural fit for large automotive hybrid electric drives because it uses several levels of DC voltage sources, which would be available from batteries, ultracapacitors, or fuel cells. Simulation and experimental results show how to operate this converter in order to maintain equal charge/discharge rates from the DC sources (batteries, capacitors, or fuel cells) in an HEV.

384 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The most important topologies like diode-clamped inverter (neutral-point clamped), capacitor-Clamped (flying capacitor), and cascaded multicell with separate DC sources are presented and the circuit topology options are presented.
Abstract: Multilevel inverter technology has emerged recently as a very important alternative in the area of high-power medium-voltage energy control. This paper presents the most important topologies like diode-clamped inverter (neutral-point clamped), capacitor-clamped (flying capacitor), and cascaded multicell with separate DC sources. Emerging topologies like asymmetric hybrid cells and soft-switched multilevel inverters are also discussed. This paper also presents the most relevant control and modulation methods developed for this family of converters: multilevel sinusoidal pulsewidth modulation, multilevel selective harmonic elimination, and space-vector modulation. Special attention is dedicated to the latest and more relevant applications of these converters such as laminators, conveyor belts, and unified power-flow controllers. The need of an active front end at the input side for those inverters supplying regenerative loads is also discussed, and the circuit topology options are also presented. Finally, the peripherally developing areas such as high-voltage high-power devices and optical sensors and other opportunities for future development are addressed.

6,472 citations

Journal ArticleDOI
TL;DR: New trends in power electronics for the integration of wind and photovoltaic (PV) power generators are presented and a review of the appropriate storage-system technology used for the Integration of intermittent renewable energy sources is introduced.
Abstract: The use of distributed energy resources is increasingly being pursued as a supplement and an alternative to large conventional central power stations. The specification of a power-electronic interface is subject to requirements related not only to the renewable energy source itself but also to its effects on the power-system operation, especially where the intermittent energy source constitutes a significant part of the total system capacity. In this paper, new trends in power electronics for the integration of wind and photovoltaic (PV) power generators are presented. A review of the appropriate storage-system technology used for the integration of intermittent renewable energy sources is also introduced. Discussions about common and future trends in renewable energy systems based on reliability and maturity of each technology are presented

3,799 citations

Journal ArticleDOI
TL;DR: This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry.
Abstract: Multilevel converters have been under research and development for more than three decades and have found successful industrial application. However, this is still a technology under development, and many new contributions and new commercial topologies have been reported in the last few years. The aim of this paper is to group and review these recent contributions, in order to establish the current state of the art and trends of the technology, to provide readers with a comprehensive and insightful review of where multilevel converter technology stands and is heading. This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry. In addition, new promising topologies are discussed. Recent advances made in modulation and control of multilevel converters are also addressed. A great part of this paper is devoted to show nontraditional applications powered by multilevel converters and how multilevel converters are becoming an enabling technology in many industrial sectors. Finally, some future trends and challenges in the further development of this technology are discussed to motivate future contributions that address open problems and explore new possibilities.

3,415 citations

Proceedings ArticleDOI
08 Oct 1995
TL;DR: This paper presents three multilevel voltage source converters: (1) diode-clamp, (2) flying-capacitors, and (3) cascaded-inverters with separate DC sources.
Abstract: Multilevel voltage source converters are emerging as a new breed of power converter options for high-power applications. The multilevel voltage source converters typically synthesize the staircase voltage wave from several levels of DC capacitor voltages. One of the major limitations of the multilevel converters is the voltage unbalance between different levels. The techniques to balance the voltage between different levels normally involve voltage clamping or capacitor charge control. There are several ways of implementing voltage balance in multilevel converters. Without considering the traditional magnetic coupled converters, this paper presents three recently developed multilevel voltage source converters: (1) diode-clamp, (2) flying-capacitors, and (3) cascaded-inverters with separate DC sources. The operating principle, features, constraints, and potential applications of these converters are discussed.

3,232 citations

Proceedings ArticleDOI
23 Jun 2003
TL;DR: In this article, a new multilevel converter topology suitable for very high voltage applications, especially network interties in power generation and transmission, is presented, and a suitable structure of the converter-control is proposed.
Abstract: This paper presents a new multilevel converter topology suitable for very high voltage applications, especially network interties in power generation and transmission. The fundamental concept and the applied control scheme is introduced. Simulation results of a 36 MW-network intertie illustrate the efficient operating characteristics. A suitable structure of the converter-control is proposed.

2,806 citations