scispace - formally typeset
Search or ask a question
Author

Fangzhao Wu

Bio: Fangzhao Wu is an academic researcher from Tsinghua University. The author has contributed to research in topics: Multi-task learning & Sentiment analysis. The author has an hindex of 1, co-authored 1 publications receiving 39 citations.

Papers
More filters
Proceedings ArticleDOI
14 Nov 2015
TL;DR: This paper proposes to train sentiment classifiers for multiple domains in a collaborative way based on multi-task learning and decomposes the sentiment classifier in each domain into two components, a general one and a domain-specific one.
Abstract: Sentiment classification is a hot research topic in both industrial and academic fields. The mainstream sentiment classification methods are based on machine learning and treat sentiment classification as a text classification problem. However, sentiment classification is widely recognized as a highly domain-dependent task. The sentiment classifier trained in one domain may not perform well in another domain. A simple solution to this problem is training a domain-specific sentiment classifier for each domain. However, it is difficult to label enough data for every domain since they are in a large quantity. In addition, this method omits the sentiment information in other domains. In this paper, we propose to train sentiment classifiers for multiple domains in a collaborative way based on multi-task learning. Specifically, we decompose the sentiment classifier in each domain into two components, a general one and a domain-specific one. The general sentiment classifier can capture the global sentiment information and is trained across various domains to obtain better generalization ability. The domain-specific sentiment classifier is trained using the labeled data in one domain to capture the domain-specific sentiment information. In addition, we explore two kinds of relations between domains, one based on textual content and the other one based on sentiment word distribution. We build a domain similarity graph using domain relations and encode it into our approach as regularization over the domain-specific sentiment classifiers. Besides, we incorporate the sentiment knowledge extracted from sentiment lexicons to help train the general sentiment classifier more accurately. Moreover, we introduce an accelerated optimization algorithm to train the sentiment classifiers efficiently. Experimental results on two benchmark sentiment datasets show that our method can outperform baseline methods significantly and consistently.

54 citations


Cited by
More filters
Posted Content
TL;DR: Multi-task learning (MTL) as mentioned in this paper is a learning paradigm in machine learning and its aim is to leverage useful information contained in multiple related tasks to help improve the generalization performance of all the tasks.
Abstract: Multi-Task Learning (MTL) is a learning paradigm in machine learning and its aim is to leverage useful information contained in multiple related tasks to help improve the generalization performance of all the tasks. In this paper, we give a survey for MTL from the perspective of algorithmic modeling, applications and theoretical analyses. For algorithmic modeling, we give a definition of MTL and then classify different MTL algorithms into five categories, including feature learning approach, low-rank approach, task clustering approach, task relation learning approach and decomposition approach as well as discussing the characteristics of each approach. In order to improve the performance of learning tasks further, MTL can be combined with other learning paradigms including semi-supervised learning, active learning, unsupervised learning, reinforcement learning, multi-view learning and graphical models. When the number of tasks is large or the data dimensionality is high, we review online, parallel and distributed MTL models as well as dimensionality reduction and feature hashing to reveal their computational and storage advantages. Many real-world applications use MTL to boost their performance and we review representative works in this paper. Finally, we present theoretical analyses and discuss several future directions for MTL.

1,202 citations

Journal ArticleDOI
TL;DR: Many areas, including computer vision, bioinformatics, health informatics, speech, natural language processing, web applications and ubiquitous computing, use MTL to improve the performance of the applications involved and some representative works are reviewed.
Abstract: As a promising area in machine learning, multi-task learning (MTL) aims to improve the performance of multiple related learning tasks by leveraging useful information among them. In this paper, we give an overview of MTL by first giving a definition of MTL. Then several different settings of MTL are introduced, including multi-task supervised learning, multi-task unsupervised learning, multi-task semi-supervised learning, multi-task active learning, multi-task reinforcement learning, multi-task online learning and multi-task multi-view learning. For each setting, representative MTL models are presented. In order to speed up the learning process, parallel and distributed MTL models are introduced. Many areas, including computer vision, bioinformatics, health informatics, speech, natural language processing, web applications and ubiquitous computing, use MTL to improve the performance of the applications involved and some representative works are reviewed. Finally, recent theoretical analyses for MTL are presented.

991 citations

Journal ArticleDOI
TL;DR: Multi-task learning (MTL) as mentioned in this paper is a learning paradigm in machine learning and its aim is to leverage useful information contained in multiple related tasks to help improve the generalization performance of all the tasks.
Abstract: Multi-Task Learning (MTL) is a learning paradigm in machine learning and its aim is to leverage useful information contained in multiple related tasks to help improve the generalization performance of all the tasks. In this paper, we give a survey for MTL from the perspective of algorithmic modeling, applications and theoretical analyses. For algorithmic modeling, we give a definition of MTL and then classify different MTL algorithms into five categories, including feature learning approach, low-rank approach, task clustering approach, task relation learning approach and decomposition approach as well as discussing the characteristics of each approach. In order to improve the performance of learning tasks further, MTL can be combined with other learning paradigms including semi-supervised learning, active learning, unsupervised learning, reinforcement learning, multi-view learning and graphical models. When the number of tasks is large or the data dimensionality is high, we review online, parallel and distributed MTL models as well as dimensionality reduction and feature hashing to reveal their computational and storage advantages. Many real-world applications use MTL to boost their performance and we review representative works in this paper. Finally, we present theoretical analyses and discuss several future directions for MTL.

223 citations

Proceedings ArticleDOI
15 Feb 2018
TL;DR: A multinomial adversarial network (MAN) to tackle the real-world problem of multi-domain text classification (MDTC) in which labeled data may exist for multiple domains, but in insufficient amounts to train effective classifiers for one or more of the domains.
Abstract: Many text classification tasks are known to be highly domain-dependent. Unfortunately, the availability of training data can vary drastically across domains. Worse still, for some domains there may not be any annotated data at all. In this work, we propose a multinomial adversarial network (MAN) to tackle this real-world problem of multi-domain text classification (MDTC) in which labeled data may exist for multiple domains, but in insufficient amounts to train effective classifiers for one or more of the domains. We provide theoretical justifications for the MAN framework, proving that different instances of MANs are essentially minimizers of various f-divergence metrics (Ali and Silvey, 1966) among multiple probability distributions. MANs are thus a theoretically sound generalization of traditional adversarial networks that discriminate over two distributions. More specifically, for the MDTC task, MAN learns features that are invariant across multiple domains by resorting to its ability to reduce the divergence among the feature distributions of each domain. We present experimental results showing that MANs significantly outperform the prior art on the MDTC task. We also show that MANs achieve state-of-the-art performance for domains with no labeled data.

127 citations

Journal ArticleDOI
TL;DR: A deep domain generalization framework with structured low-rank constraint to facilitate the unseen target domain evaluation by capturing consistent knowledge across multiple related source domains and the experimental results show the superiority of the algorithm by comparing it with state-of-the-artdomain generalization approaches.
Abstract: Domain adaptation nowadays attracts increasing interests in pattern recognition and computer vision field, since it is an appealing technique in fighting off weakly labeled or even totally unlabeled target data by leveraging knowledge from external well-learned sources. Conventional domain adaptation assumes that target data are still accessible in the training stage. However, we would always confront such cases in reality that the target data are totally blind in the training stage. This is extremely challenging since we have no prior knowledge of the target. In this paper, we develop a deep domain generalization framework with structured low-rank constraint to facilitate the unseen target domain evaluation by capturing consistent knowledge across multiple related source domains. Specifically, multiple domain-specific deep neural networks are built to capture the rich information within multiple sources. Meanwhile, a domain-invariant deep neural network is jointly designed to uncover most consistent and common knowledge across multiple sources so that we can generalize it to unseen target domains in the test stage. Moreover, structured low-rank constraint is exploited to align multiple domain-specific networks and the domain-invariant one in order to better transfer knowledge from multiple sources to boost the learning problem in unseen target domains. Extensive experiments are conducted on several cross-domain benchmarks and the experimental results show the superiority of our algorithm by comparing it with state-of-the-art domain generalization approaches.

102 citations