scispace - formally typeset
Search or ask a question
Author

Faramarz Gordaninejad

Bio: Faramarz Gordaninejad is an academic researcher from University of Nevada, Reno. The author has contributed to research in topics: Magnetorheological fluid & Damper. The author has an hindex of 37, co-authored 198 publications receiving 4430 citations. Previous affiliations of Faramarz Gordaninejad include Georgia Southern University & Community College of Philadelphia.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors reviewed relevant literature which deals with various manifestations of energy absorption of composites from the nano to the macro-scale, with emphasis on the nano-scale.

472 citations

Journal ArticleDOI
TL;DR: In this article, the performance of a magnetorheological elastomer-based semi-active/passive variable stiffness and damping isolator (VSDI) in a scaled building system is evaluated.
Abstract: This paper presents the performance of a new magnetorheological elastomer-based semi-active/passive variable stiffness and damping isolator (VSDI) in a scaled building system. The force of the VSDI can be controlled in real time by varying the applied magnetic field. To demonstrate the performance of the VSDI, four prototypes are built and utilized in a scaled three-story building. A Lyapunov-based control strategy is employed and it is demonstrated that it works well for the scaled building system under the scaled El Centro earthquake motion. Experimental results show that the VSDIs significantly reduce the acceleration and relative displacement of the building floors.

150 citations

Journal ArticleDOI
TL;DR: In this paper, a simplified version of the Herschel-Bulkley steady flow model was proposed for post-yield analysis of electro- and magneto-rheological fluids.
Abstract: The Bingham plastic constitutive model has been widely used to predict the post-yield behavior of electro- and magneto-rheological fluids (ER and MR fluids). However, if these fluids experience shear thinning or shear thickening, the Bingham plastic model may not be an accurate predictor of behavior, since the post-yield plastic viscosity is assumed to be constant. In a recent study, it was theoretically and experimentally demonstrated that the Herschel-Bulkley fluid model can be successfully employed when evaluating non-Newtonian post-yield behavior of ER and MR fluids. In this paper, we extend our previous work and adopt the Herschel-Bulkley model to include a detailed analysis of ER and MR fluid dynamics through pipes and parallel plates. Simplified explicit expressions for the exact formulation are also developed. It is shown that the proposed simplified model of the Herschel-Bulkley steady flow equations for pipes and parallel plates can be used as an accurate design tool while providing a convenient...

138 citations

Journal ArticleDOI
TL;DR: In this paper, a variable stiffness and damping isolator (VSDI) is designed based on an optimized magnetic field passing through MRE layers to achieve maximum changes in mechanical properties.
Abstract: This paper presents theoretical modeling of a new magnetorheological elastomer (MRE) base isolator and its performance for vibration control. The elastomeric element of the traditional steel–rubber base isolator is modified to a composite layer of passive elastomer and MRE which makes the isolator controllable with respect to its stiffness and damping. The proposed variable stiffness and damping isolator (VSDI) is designed based on an optimized magnetic field passing through MRE layers to achieve maximum changes in mechanical properties. The controllability of the VSDI is investigated experimentally under double lap shear tests. A model employing the Bouc–Wen hysteresis element is proposed to characterize the force–displacement relationship of the VSDI. An integrated system which consists of four VSDIs is designed, built and tested. Dynamic testing on the integrated system is performed to investigate the effectiveness of the VSDIs for vibration control. Experimental results show significant shift in natural frequency, when VSDIs are activated and the possibility of using the VSDIs as a controllable base isolator.

126 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This data indicates that self-Assembled Monolayers and Walled Carbon Nanotubes with high adhesion to Nitroxide-Mediated Polymerization have potential in the well-Defined Polymer Age.
Abstract: Keywords: Fragmentation Chain-Transfer ; Self-Assembled Monolayers ; Walled Carbon Nanotubes ; Well-Defined Polymer ; Nitroxide-Mediated Polymerization ; Block-Copolymer Brushes ; Poly(Methyl Methacrylate) Brushes ; Transfer Raft Polymerization ; Quartz-Crystal Microbalance ; Poly(Acrylic Acid) Brushes Reference EPFL-REVIEW-148464doi:10.1021/cr900045aView record in Web of Science Record created on 2010-04-23, modified on 2017-05-10

1,542 citations

Journal ArticleDOI
TL;DR: In this paper, the authors identify the topics that are most relevant to multifunctional composite materials and structures and review representative journal publications that are related to those topics and make suggestions regarding future research needs.

956 citations

Journal ArticleDOI
TL;DR: Magnetorheological (MR) materials are a kind of smart materials whose mechanical properties can be altered in a controlled fashion by an external magnetic field as discussed by the authors, and they traditionally include fluids, elastomers and foams.
Abstract: Magnetorheological (MR) materials are a kind of smart materials whose mechanical properties can be altered in a controlled fashion by an external magnetic field. They traditionally include fluids, elastomers and foams. In this review paper we revisit the most outstanding advances on the rheological performance of MR fluids. Special emphasis is paid to the understanding of their yielding, flow and viscoelastic behaviour under shearing flows.

873 citations

Journal ArticleDOI
TL;DR: In this paper, an overview of the essential features and advantages of magnetorheological (MR) materials and devices is given, followed by the derivation of a quasi-static axisymmetric model of MR dampers, which is then compared with both a simple parallel-plate model and experimental results.

719 citations

Patent
25 Feb 2004
TL;DR: In this paper, the authors describe a shielded medical device implanted in a biological organism, which has a magnetic shield, and the magnetic shield contains a layer of nanomagnetic material; such layer has a morphological density of at least 98 percent; it is bonded to the medical device by means of an interlayer with a thickness of less than about 10 microns.
Abstract: A shielded medical device implanted in a biological organism. The device has a magnetic shield, and the magnetic shield contains a layer of nanomagnetic material; such layer has a morphological density of at least 98 percent; and it is bonded to the medical device by means of an interlayer with a thickness of less than about 10 microns. The nanomagnetic material in such layer has a saturation magnetization of from about 1 to about 36,000 Gauss, a coercive force of from about 0.01 to about 5,000 Oersteds, a relative magnetic permeability of from about 1 to about 500,000, and an average particle size of less than about 100 nanometers.

687 citations