scispace - formally typeset
Search or ask a question
Author

Faraz Khan

Bio: Faraz Khan is an academic researcher from GlobalFoundries. The author has contributed to research in topics: Transistor & Logic gate. The author has an hindex of 8, co-authored 15 publications receiving 204 citations. Previous affiliations of Faraz Khan include University of California, Los Angeles & IBM.

Papers
More filters
Journal ArticleDOI
TL;DR: The hypothesis that tea consumption might lower the risk of stroke is supported, as a consistent, dose-response association with tea consumption on both incidence and mortality was noted.

55 citations

Journal ArticleDOI
TL;DR: For all studies of tea and most studies of coffee and caffeine, the estimates of cognitive decline were lower among consumers, although there is a lack of a distinct dose response.

53 citations

Journal ArticleDOI
TL;DR: In this paper, a multiple-time programmable embedded non-volatile memory element, called the "charge trap transistor" (CTT), was proposed for high-$k$ -metal-gate CMOS technologies.
Abstract: The availability of on-chip non-volatile memory for advanced high- $k$ -metal-gate CMOS technology nodes has been limited due to integration and scaling challenges as well as operational voltage incompatibilities, while its need continues to grow rapidly in modern high-performance systems. By exploiting intrinsic device self-heating enhanced charge trapping in as fabricated high- $k$ -metal-gate logic devices, we introduce a unique multiple-time programmable embedded non-volatile memory element, called the ‘charge trap transistor’ (CTT), for high- $k$ -metal-gate CMOS technologies. Functionality and feasibility of using CTT memory devices have been demonstrated on 22 nm planar and 14 nm FinFET technology platforms, including fully functional product prototype memory arrays. These transistor memory devices offer high density ( $\sim 0.144\mu\mathrm{m}^{2}$ /bit for 22 nm and $\sim 0.082\mu\mathrm{m}^{2}$ /bit for 14 nm technology), logic voltage compatible and low peak power operation (~4mW), and excellent retention for a fully integrated and scalable embedded non-volatile memory without added process complexity or masks.

42 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the charge trapping behavior in 22nm technology high- $k$ -metal-gate SOI CMOS logic devices under various bias stress and self-heating conditions.
Abstract: In this letter, charge trapping behavior in 22-nm technology high- $k$ -metal-gate SOI CMOS logic devices is analyzed under various bias stress and self-heating conditions. It is observed that the charge trapping is not only dependent on the channel power density during stress, which is controlled by drain bias and device channel length, but is also strongly modulated by the device channel width. Thus, identical power densities in devices with different channel widths result in significantly different charge trapping behaviors. It is shown that device self-heating is strongly influenced by the device channel width and that the channel temperature during the charge injection process significantly impacts the magnitude and stability of the trapped charge. We discuss the implications of the findings for the application of high- $k$ -metal-gate logic devices as embedded memory elements for non-volatile data storage in high- $k$ -metal-gate CMOS technologies without added process complexity.

31 citations

Proceedings ArticleDOI
19 Apr 2015
TL;DR: This work explores the use of oxygen vacancies for nonvolatile data storage by trapping electrons in the high-k, gate dielectric layer of NFETs via channel carrier injection and erase by tunneling.
Abstract: We explore the use of oxygen vacancies for nonvolatile data storage by trapping electrons in the high-k, gate dielectric layer of NFETs. Programming is performed via channel carrier injection and is erased by tunneling. 64Kb arrays were constructed and reliability is demonstrated.

21 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Although deficiencies in polyphenol intake do not result in specific deficiency diseases, adequate intake of polyphenols could confer health benefits, especially with regard to chronic diseases, because tea, cocoa, fruits, and berries, as well as vegetables, are rich inpolyphenols.
Abstract: Although deficiencies in polyphenol intake do not result in specific deficiency diseases, adequate intake of polyphenols could confer health benefits, especially with regard to chronic diseases. Tea, cocoa, fruits, and berries, as well as vegetables, are rich in polyphenols. Flavan-3-ols from cocoa have been found to be associated with a reduced risk of stroke, myocardial infarction, and diabetes, as well as improvements in lipids, endothelial-dependent blood flow and blood pressure, insulin resistance, and systemic inflammation. The flavonoid quercetin and the stilbene resveratrol have also been associated with cardiometabolic health. Although polyphenols have been associated with improved cerebral blood flow, evidence of an impact on cognition is more limited. The ability of dietary polyphenols to produce clinical effects may be due, at least in part, to a bi-directional relationship with the gut microbiota. Polyphenols can impact the composition of the gut microbiota (which are independently associated with health benefits), and gut bacteria metabolize polyphenols into bioactive compounds that produce clinical benefits. Another critical interaction is that of polyphenols with other phytochemicals, which could be relevant to interpreting the health parameter effects of polyphenols assayed as purified extracts, whole foods, or whole food extracts.

552 citations

Journal ArticleDOI
TL;DR: The present review of 304 PMASRs published between 1950 and 2013 confirmed that plant food groups are more protective than animal food groups against DRCDs, and grain products are more Protective than fruits and vegetables.
Abstract: Associations between food and beverage groups and the risk of diet-related chronic disease (DRCD) have been the subject of intensive research in preventive nutrition. Pooled/meta-analyses and systematic reviews (PMASRs) aim to better characterize these associations. To date, however, there has been no attempt to synthesize all PMASRs that have assessed the relationship between food and beverage groups and DRCDs. The objectives of this review were to aggregate PMASRs to obtain an overview of the associations between food and beverage groups (n = 17) and DRCDs (n = 10) and to establish new directions for future research needs. The present review of 304 PMASRs published between 1950 and 2013 confirmed that plant food groups are more protective than animal food groups against DRCDs. Within plant food groups, grain products are more protective than fruits and vegetables. Among animal food groups, dairy/milk products have a neutral effect on the risk of DRCDs, while red/processed meats tend to increase the risk. Among beverages, tea was the most protective and soft drinks the least protective against DRCDs. For two of the DRCDs examined, sarcopenia and kidney disease, no PMASR was found. Overweight/obesity, type 2 diabetes, and various types of cardiovascular disease and cancer accounted for 289 of the PMASRs. There is a crucial need to further study the associations between food and beverage groups and mental health, skeletal health, digestive diseases, liver diseases, kidney diseases, obesity, and type 2 diabetes.

172 citations

Journal ArticleDOI
TL;DR: Overall, findings are inconsistent and fragmented and more research is warranted to determine the underlying mechanisms and to establish dose-response relationships for optimal brain maintenance in different population subgroups.

156 citations

Journal ArticleDOI
TL;DR: Several cross-sectional and longitudinal population-based studies suggested a protective effect of coffee, tea, and caffeine use against late-life cognitive impairment/decline, although the association was not found in all cognitive domains investigated and there was a lack of a distinct dose-response association.
Abstract: A prolonged preclinical phase of more than two decades before the onset of dementia suggested that initial brain changes of Alzheimer’s disease (AD) and the symptoms of advanced AD may represent a unique continuum. Given the very limited therapeutic value of drugs currently used in the treatment of AD and dementia, preventing or postponing the onset of AD and delaying or slowing its progression are becoming mandatory. Among possible reversible risk factors of dementia and AD, vascular, metabolic, and lifestyle-related factors were associated with the development of dementia and late-life cognitive disorders, opening new avenues for the prevention of these diseases. Among diet-associated factors, coffee is regularly consumed by millions of people around the world and owing to its caffeine content, it is the best known psychoactive stimulant resulting in heightened alertness and arousal and improvement of cognitive performance. Besides its short-term effect, some case-control and cross-sectional and longitudinal population-based studies evaluated the long-term effects on brain function and provided some evidence that coffee, tea, and caffeine consumption or higher plasma caffeine levels may be protective against cognitive impairment/decline and dementia. In particular, several cross-sectional and longitudinal population-based studies suggested a protective effect of coffee, tea, and caffeine use against late-life cognitive impairment/decline, although the association was not found in all cognitive domains investigated and there was a lack of a distinct dose-response association, with a stronger effect among women than men. The findings on the association of coffee, tea, and caffeine consumption or plasma caffeine levels with incident mild cognitive impairment and its progression to dementia were too limited to draw any conclusion. Furthermore, for dementia and AD prevention, some studies with baseline examination in midlife pointed to a lack of association, although other case-control and longitudinal population-based studies with briefer follow-up periods supported favourable effects of coffee, tea, and caffeine consumption against AD. Larger studies with longer follow-up periods should be encouraged, addressing other potential bias and confounding sources, so hopefully opening new ways for diet-related prevention of dementia and AD.

154 citations

Journal ArticleDOI
TL;DR: It was revealed that tea infusion consumption substantially increased diversity and altered the structure of gut microbiota, which may be helpful in understanding the anti-obesity mechanisms of tea.
Abstract: Tea consumption has been identified to have an anti-obesity effect. Whether it is associated with gut microbiota modulation is investigated in this study. Phenolic profiles of infusions of green tea, oolong tea and black tea were comprehensively compared first, by utilizing ultra-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q-TOFMS). Subsequently, high-fat-diet induced obese C57BL/6J mice were orally administered these three types of tea infusions for 13 weeks to evaluate their anti-obesity and gut microbiota modulatory effects. In general, 8 phenolic acids, 12 flavanols, 9 flavonols, 2 alkaloids and 1 amino acid were identified from the three types of tea infusions. Though they possess diverse phenolic compounds, no significant differences in the prevention of the development of obesity in high-fat-fed mice were discovered among the three types of tea. Based on high-throughput MiSeq sequencing and multivariate statistical analysis, it was revealed that tea infusion consumption substantially increased diversity and altered the structure of gut microbiota. The linear discriminant analysis effect size algorithm identified 30 key phylotypes in response to high-fat diet and tea, including Alistipes, Rikenella, Lachnospiraceae, Akkermansia, Bacteroides, Allobaculum, Parabacteroides, etc. Moreover, Spearman's correlation analysis indicated that these key phylotypes might have a close association with the obesity related indexes of the host. This study provides detailed information regarding the impact of tea consumption on gut microbiota, which may be helpful in understanding the anti-obesity mechanisms of tea.

142 citations