scispace - formally typeset
Search or ask a question
Author

Farid Melgani

Bio: Farid Melgani is an academic researcher from University of Trento. The author has contributed to research in topics: Support vector machine & Contextual image classification. The author has an hindex of 48, co-authored 216 publications receiving 10569 citations. Previous affiliations of Farid Melgani include University of Genoa & University of Batna.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper addresses the problem of the classification of hyperspectral remote sensing images by support vector machines by understanding and assessing the potentialities of SVM classifiers in hyperdimensional feature spaces and concludes that SVMs are a valid and effective alternative to conventional pattern recognition approaches.
Abstract: This paper addresses the problem of the classification of hyperspectral remote sensing images by support vector machines (SVMs) First, we propose a theoretical discussion and experimental analysis aimed at understanding and assessing the potentialities of SVM classifiers in hyperdimensional feature spaces Then, we assess the effectiveness of SVMs with respect to conventional feature-reduction-based approaches and their performances in hypersubspaces of various dimensionalities To sustain such an analysis, the performances of SVMs are compared with those of two other nonparametric classifiers (ie, radial basis function neural networks and the K-nearest neighbor classifier) Finally, we study the potentially critical issue of applying binary SVMs to multiclass problems in hyperspectral data In particular, four different multiclass strategies are analyzed and compared: the one-against-all, the one-against-one, and two hierarchical tree-based strategies Different performance indicators have been used to support our experimental studies in a detailed and accurate way, ie, the classification accuracy, the computational time, the stability to parameter setting, and the complexity of the multiclass architecture The results obtained on a real Airborne Visible/Infrared Imaging Spectroradiometer hyperspectral dataset allow to conclude that, whatever the multiclass strategy adopted, SVMs are a valid and effective alternative to conventional pattern recognition approaches (feature-reduction procedures combined with a classification method) for the classification of hyperspectral remote sensing data

3,607 citations

Journal ArticleDOI
TL;DR: Experiments carried out on two sets of multitemporal images acquired by the European Remote Sensing 2 satellite SAR sensor confirm the effectiveness of the proposed unsupervised approach, which results in change-detection accuracies very similar to those that can be achieved by a manual supervised thresholding.
Abstract: We present a novel automatic and unsupervised change-detection approach specifically oriented to the analysis of multitemporal single-channel single-polarization synthetic aperture radar (SAR) images. This approach is based on a closed-loop process made up of three main steps: (1) a novel preprocessing based on a controlled adaptive iterative filtering; (2) a comparison between multitemporal images carried out according to a standard log-ratio operator; and (3) a novel approach to the automatic analysis of the log-ratio image for generating the change-detection map. The first step aims at reducing the speckle noise in a controlled way in order to maximize the discrimination capability between changed and unchanged classes. In the second step, the two filtered multitemporal images are compared to generate a log-ratio image that contains explicit information on changed areas. The third step produces the change-detection map according to a thresholding procedure based on a reformulation of the Kittler-Illingworth (KI) threshold selection criterion. In particular, the modified KI criterion is derived under the generalized Gaussian assumption for modeling the distributions of changed and unchanged classes. This parametric model was chosen because it is capable of better fitting the conditional densities of classes in the log-ratio image. In order to control the filtering step and, accordingly, the effects of the filtering process on change-detection accuracy, we propose to identify automatically the optimal number of despeckling filter iterations [Step 1] by analyzing the behavior of the modified KI criterion. This results in a completely automatic and self-consistent change-detection approach that avoids the use of empirical methods for the selection of the best number of filtering iterations. Experiments carried out on two sets of multitemporal images (characterized by different levels of speckle noise) acquired by the European Remote Sensing 2 satellite SAR sensor confirm the effectiveness of the proposed unsupervised approach, which results in change-detection accuracies very similar to those that can be achieved by a manual supervised thresholding.

688 citations

Journal ArticleDOI
TL;DR: A novel approach based on deep learning for active classification of electrocardiogram (ECG) signals by learning a suitable feature representation from the raw ECG data in an unsupervised way using stacked denoising autoencoders (SDAEs) with sparsity constraint.

507 citations

Journal ArticleDOI
01 Sep 2008
TL;DR: A thorough experimental study to show the superiority of the generalization capability of the support vector machine (SVM) approach in the automatic classification of electrocardiogram (ECG) beats and suggest that further substantial improvements in terms of classification accuracy can be achieved by the proposed PSO-SVM classification system.
Abstract: The aim of this paper is twofold. First, we present a thorough experimental study to show the superiority of the generalization capability of the support vector machine (SVM) approach in the automatic classification of electrocardiogram (ECG) beats. Second, we propose a novel classification system based on particle swarm optimization (PSO) to improve the generalization performance of the SVM classifier. For this purpose, we have optimized the SVM classifier design by searching for the best value of the parameters that tune its discriminant function, and upstream by looking for the best subset of features that feed the classifier. The experiments were conducted on the basis of ECG data from the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database to classify five kinds of abnormal waveforms and normal beats. In particular, they were organized so as to test the sensitivity of the SVM classifier and that of two reference classifiers used for comparison, i.e., the k-nearest neighbor (kNN) classifier and the radial basis function (RBF) neural network classifier, with respect to the curse of dimensionality and the number of available training beats. The obtained results clearly confirm the superiority of the SVM approach as compared to traditional classifiers, and suggest that further substantial improvements in terms of classification accuracy can be achieved by the proposed PSO-SVM classification system. On an average, over three experiments making use of a different total number of training beats (250, 500, and 750, respectively), the PSO-SVM yielded an overall accuracy of 89.72% on 40438 test beats selected from 20 patient records against 85.98%, 83.70%, and 82.34% for the SVM, the kNN, and the RBF classifiers, respectively.

480 citations

Journal ArticleDOI
TL;DR: This paper proposes a classification system based on a genetic optimization framework formulated in such a way as to detect the best discriminative features without requiring the a priori setting of their number by the user and to estimate the best SVM parameters in a completely automatic way.
Abstract: Recent remote sensing literature has shown that support vector machine (SVM) methods generally outperform traditional statistical and neural methods in classification problems involving hyperspectral images. However, there are still open issues that, if suitably addressed, could allow further improvement of their performances in terms of classification accuracy. Two especially critical issues are: 1) the determination of the most appropriate feature subspace where to carry out the classification task and 2) model selection. In this paper, these two issues are addressed through a classification system that optimizes the SVM classifier accuracy for this kind of imagery. This system is based on a genetic optimization framework formulated in such a way as to detect the best discriminative features without requiring the a priori setting of their number by the user and to estimate the best SVM parameters (i.e., regularization and kernel parameters) in a completely automatic way. For these purposes, it exploits fitness criteria intrinsically related to the generalization capabilities of SVM classifiers. In particular, two criteria are explored, namely: 1) the simple support vector count and 2) the radius margin bound. The effectiveness of the proposed classification system in general and of these two criteria in particular is assessed both by simulated and real experiments. In addition, a comparison with classification approaches based on three different feature selection methods is reported, i.e., the steepest ascent (SA) algorithm and two other methods explicitly developed for SVM classifiers, namely: 1) the recursive feature elimination technique and 2) the radius margin bound minimization method

421 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
01 May 1981
TL;DR: This chapter discusses Detecting Influential Observations and Outliers, a method for assessing Collinearity, and its applications in medicine and science.
Abstract: 1. Introduction and Overview. 2. Detecting Influential Observations and Outliers. 3. Detecting and Assessing Collinearity. 4. Applications and Remedies. 5. Research Issues and Directions for Extensions. Bibliography. Author Index. Subject Index.

4,948 citations

Journal ArticleDOI
TL;DR: This paper addresses the problem of the classification of hyperspectral remote sensing images by support vector machines by understanding and assessing the potentialities of SVM classifiers in hyperdimensional feature spaces and concludes that SVMs are a valid and effective alternative to conventional pattern recognition approaches.
Abstract: This paper addresses the problem of the classification of hyperspectral remote sensing images by support vector machines (SVMs) First, we propose a theoretical discussion and experimental analysis aimed at understanding and assessing the potentialities of SVM classifiers in hyperdimensional feature spaces Then, we assess the effectiveness of SVMs with respect to conventional feature-reduction-based approaches and their performances in hypersubspaces of various dimensionalities To sustain such an analysis, the performances of SVMs are compared with those of two other nonparametric classifiers (ie, radial basis function neural networks and the K-nearest neighbor classifier) Finally, we study the potentially critical issue of applying binary SVMs to multiclass problems in hyperspectral data In particular, four different multiclass strategies are analyzed and compared: the one-against-all, the one-against-one, and two hierarchical tree-based strategies Different performance indicators have been used to support our experimental studies in a detailed and accurate way, ie, the classification accuracy, the computational time, the stability to parameter setting, and the complexity of the multiclass architecture The results obtained on a real Airborne Visible/Infrared Imaging Spectroradiometer hyperspectral dataset allow to conclude that, whatever the multiclass strategy adopted, SVMs are a valid and effective alternative to conventional pattern recognition approaches (feature-reduction procedures combined with a classification method) for the classification of hyperspectral remote sensing data

3,607 citations

Journal ArticleDOI
TL;DR: This paper reviews remote sensing implementations of support vector machines (SVMs), a promising machine learning methodology that is particularly appealing in the remote sensing field due to their ability to generalize well even with limited training samples.
Abstract: A wide range of methods for analysis of airborne- and satellite-derived imagery continues to be proposed and assessed. In this paper, we review remote sensing implementations of support vector machines (SVMs), a promising machine learning methodology. This review is timely due to the exponentially increasing number of works published in recent years. SVMs are particularly appealing in the remote sensing field due to their ability to generalize well even with limited training samples, a common limitation for remote sensing applications. However, they also suffer from parameter assignment issues that can significantly affect obtained results. A summary of empirical results is provided for various applications of over one hundred published works (as of April, 2010). It is our hope that this survey will provide guidelines for future applications of SVMs and possible areas of algorithm enhancement.

2,546 citations

Journal ArticleDOI
TL;DR: The concept of deep learning is introduced into hyperspectral data classification for the first time, and a new way of classifying with spatial-dominated information is proposed, which is a hybrid of principle component analysis (PCA), deep learning architecture, and logistic regression.
Abstract: Classification is one of the most popular topics in hyperspectral remote sensing. In the last two decades, a huge number of methods were proposed to deal with the hyperspectral data classification problem. However, most of them do not hierarchically extract deep features. In this paper, the concept of deep learning is introduced into hyperspectral data classification for the first time. First, we verify the eligibility of stacked autoencoders by following classical spectral information-based classification. Second, a new way of classifying with spatial-dominated information is proposed. We then propose a novel deep learning framework to merge the two features, from which we can get the highest classification accuracy. The framework is a hybrid of principle component analysis (PCA), deep learning architecture, and logistic regression. Specifically, as a deep learning architecture, stacked autoencoders are aimed to get useful high-level features. Experimental results with widely-used hyperspectral data indicate that classifiers built in this deep learning-based framework provide competitive performance. In addition, the proposed joint spectral-spatial deep neural network opens a new window for future research, showcasing the deep learning-based methods' huge potential for accurate hyperspectral data classification.

2,071 citations