scispace - formally typeset
Search or ask a question
Author

Farook Rahaman

Bio: Farook Rahaman is an academic researcher from Jadavpur University. The author has contributed to research in topics: Wormhole & General relativity. The author has an hindex of 32, co-authored 208 publications receiving 2699 citations. Previous affiliations of Farook Rahaman include Jamia Millia Islamia & Inter-University Centre for Astronomy and Astrophysics.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors discuss wormholes supported by a more general form called polytropic phantom energy, which results in significant generalizations of the phantom energy and, in some cases, the generalized Chaplygin-gas wormhole models, both of which continue to receive considerable attention.
Abstract: It is generally agreed that the acceleration of the Universe can best be explained by the presence of dark or phantom energy. The equation of state of the latter shows that the null energy condition is violated. Such a violation is the primary ingredient for sustaining traversable wormholes. This paper discusses wormholes supported by a more general form called polytropic phantom energy. Its equation of state results in significant generalizations of the phantom-energy and, in some cases, the generalized Chaplygin-gas wormhole models, both of which continue to receive considerable attention from researchers. Several specific solutions are explored, namely, a constant redshift function, a particular choice of the shape function, and an isotropic-pressure model with various shape functions. Some of the wormhole spacetimes are asymptotically flat, but most are not.

78 citations

Journal ArticleDOI
TL;DR: In this paper, a relativistic model for quintessence stars with the combination of an anisotropic pressure corresponding to normal matter and a quadrupletence dark energy has been proposed.
Abstract: We propose a relativistic model for: quintessence stars with the combination of an anisotropic pressure corresponding to normal matter and a quintessence dark energy having a characteristic parameter ω q such that $-1<\omega_{q}< -\frac{1}{3}$ . We discuss various physical features of the model and show that the model satisfies all the regularity conditions and can provide stable equilibrium configurations.

72 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived an interpolation formula for the mass as a function of the radial coordinate of a star and derived the energy density, as well as the radial and transverse pressures.
Abstract: The observed evidence for the existence of strange stars and the concomitant observed masses and radii are used to derive an interpolation formula for the mass as a function of the radial coordinate. The resulting general mass function becomes an effective model for a strange star. The analysis is based on the MIT bag model and yields the energy density, as well as the radial and transverse pressures. Using the interpolation function for the mass, it is shown that a mass–radius relation due to Buchdahl is satisfied in our model. We find the surface redshift (\(Z\)) corresponding to the compactness of the stars. Finally, from our results, we predict some characteristics of a strange star of radius 9.9 km.

65 citations

Journal ArticleDOI
TL;DR: In this article, weak gravitational lensing by black holes and wormholes in the context of massive gravity (Bebronne and Tinyakov, JHEP 0904:100, 2009) theory is studied.
Abstract: Weak gravitational lensing by black holes and wormholes in the context of massive gravity (Bebronne and Tinyakov, JHEP 0904:100, 2009) theory is studied. The particular solution examined is characterized by two integration constants, the mass M and an extra parameter S namely ‘scalar charge’. These black hole reduce to the standard Schwarzschild black hole solutions when the scalar charge is zero and the mass is positive. In addition, a parameter $$\lambda $$ in the metric characterizes so-called ‘hair’. The geodesic equations are used to examine the behavior of the deflection angle in four relevant cases of the parameter $$\lambda $$ . Then, by introducing a simple coordinate transformation $$r^\lambda =S+v^2$$ into the black hole metric, we were able to find a massless wormhole solution of Einstein–Rosen (ER) (Einstein and Rosen, Phys Rev 43:73, 1935) type with scalar charge S. The programme is then repeated in terms of the Gauss–Bonnet theorem in the weak field limit after a method is established to deal with the angle of deflection using different domains of integration depending on the parameter $$\lambda $$ . In particular, we have found new analytical results corresponding to four special cases which generalize the well known deflection angles reported in the literature. Finally, we have established the time delay problem in the spacetime of black holes and wormholes, respectively.

65 citations

Journal ArticleDOI
TL;DR: In this article, a non-commutative solution for static wormholes in f(R) gravity with a noncommutativity-geometry background is discussed. But the exact solution is not discussed.
Abstract: This paper discusses several new exact solutions for static wormholes in f(R) gravity with a noncommutative-geometry background. In the first part of the paper, we assume the power-law form f(R) = aRn and discuss several solutions corresponding to different values of the exponent. The second part of the paper assumes a particular form of the shape function that also yields a viable solution. This investigation generalizes some of our previous work in f(R) gravity, as well as in noncommutative geometry.

65 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

01 Apr 2003
TL;DR: In this paper, the authors measured the flux of neutrino from distant nuclear reactors and found fewer nu;(e) events than expected from standard assumptions about nu; (e) propagation at the 99.95% C.L.yr exposure.
Abstract: KamLAND has measured the flux of nu;(e)'s from distant nuclear reactors. We find fewer nu;(e) events than expected from standard assumptions about nu;(e) propagation at the 99.95% C.L. In a 162 ton.yr exposure the ratio of the observed inverse beta-decay events to the expected number without nu;(e) disappearance is 0.611+/-0.085(stat)+/-0.041(syst) for nu;(e) energies >3.4 MeV. In the context of two-flavor neutrino oscillations with CPT invariance, all solutions to the solar neutrino problem except for the "large mixing angle" region are excluded.

1,659 citations

01 Dec 1982
TL;DR: In this paper, the authors study the solutions of the gravitational field equations which describe the contraction of a heavy star, and give general and qualitative arguments on the behavior of the metrical tensor as the contraction progresses.
Abstract: When all thermonuclear sources of energy are exhausted a sufficiently heavy star will collapse. Unless fission due to rotation, the radiation of mass, or the blowing off of mass by radiation, reduce the star's mass to the order of that of the sun, this contraction will continue indefinitely. In the present paper we study the solutions of the gravitational field equations which describe this process. In I, general and qualitative arguments are given on the behavior of the metrical tensor as the contraction progresses: the radius of the star approaches asymptotically its gravitational radius; light from the surface of the star is progressively reddened, and can escape over a progressively narrower range of angles. In II, an analytic solution of the field equations confirming these general arguments is obtained for the case that the pressure within the star can be neglected. The total time of collapse for an observer comoving with the stellar matter is finite, and for this idealized case and typical stellar masses, of the order of a day; an external observer sees the star asymptotically shrinking to its gravitational radius.

1,052 citations

Journal ArticleDOI
TL;DR: In this paper, the role of torsion in gravity has been extensively investigated along the main direction of bringing gravity closer to its gauge formulation and incorporating spin in a geometric description.
Abstract: Over recent decades, the role of torsion in gravity has been extensively investigated along the main direction of bringing gravity closer to its gauge formulation and incorporating spin in a geometric description. Here we review various torsional constructions, from teleparallel, to Einstein-Cartan, and metric-affine gauge theories, resulting in extending torsional gravity in the paradigm of f (T) gravity, where f (T) is an arbitrary function of the torsion scalar. Based on this theory, we further review the corresponding cosmological and astrophysical applications. In particular, we study cosmological solutions arising from f (T) gravity, both at the background and perturbation levels, in different eras along the cosmic expansion. The f (T) gravity construction can provide a theoretical interpretation of the late-time universe acceleration, alternative to a cosmological constant, and it can easily accommodate with the regular thermal expanding history including the radiation and cold dark matter dominated phases. Furthermore, if one traces back to very early times, for a certain class of f (T) models, a sufficiently long period of inflation can be achieved and hence can be investigated by cosmic microwave background observations-or, alternatively, the Big Bang singularity can be avoided at even earlier moments due to the appearance of non-singular bounces. Various observational constraints, especially the bounds coming from the large-scale structure data in the case of f (T) cosmology, as well as the behavior of gravitational waves, are described in detail. Moreover, the spherically symmetric and black hole solutions of the theory are reviewed. Additionally, we discuss various extensions of the f (T) paradigm. Finally, we consider the relation with other modified gravitational theories, such as those based on curvature, like f (R) gravity, trying to illuminate the subject of which formulation, or combination of formulations, might be more suitable for quantization ventures and cosmological applications.

969 citations

01 Aug 2006
TL;DR: In this article, distance measurements to 71 high redshift type Ia supernovae discovered during the first year of the 5-year Supernova Legacy Survey (SNLS) were presented.
Abstract: We present distance measurements to 71 high redshift type Ia supernovae discovered during the first year of the 5-year Supernova Legacy Survey (SNLS). These events were detected and their multi-color light-curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshift. With this data set, we have built a Hubble diagram extending to z = 1, with all distance measurements involving at least two bands. Systematic uncertainties are evaluated making use of the multiband photometry obtained at CFHT. Cosmological fits to this first year SNLS Hubble diagram give the following results: {Omega}{sub M} = 0.263 {+-} 0.042 (stat) {+-} 0.032 (sys) for a flat {Lambda}CDM model; and w = -1.023 {+-} 0.090 (stat) {+-} 0.054 (sys) for a flat cosmology with constant equation of state w when combined with the constraint from the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations.

840 citations