scispace - formally typeset
Search or ask a question
Author

Fateh Krim

Other affiliations: University of Poitiers
Bio: Fateh Krim is an academic researcher from Université de Sétif. The author has contributed to research in topics: AC power & Maximum power point tracking. The author has an hindex of 19, co-authored 75 publications receiving 1981 citations. Previous affiliations of Fateh Krim include University of Poitiers.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a survey of MPPT methods in order to analyze, simulate, and evaluate a PV power supply system under varying meteorological conditions and show that static and dynamic performances of fuzzy MPPT controller are better than those of conventional techniques based controller.
Abstract: Maximum Power Point Tracking (MPPT) methods are used in photovoltaic (PV) systems to continually maximize the PV array output power which generally depends on solar radiation and cell temperature. MPPT methods can be roughly classified into two categories: there are conventional methods, like the Perturbation and Observation (P&O) method and the Incremental Conductance (IncCond) method and advanced methods, such as, fuzzy logic (FL) based MPPT method. This paper presents a survey of these methods in order to analyze, simulate, and evaluate a PV power supply system under varying meteorological conditions. Simulation results, obtained using MATLAB/Simulink, show that static and dynamic performances of fuzzy MPPT controller are better than those of conventional techniques based controller.

372 citations

Journal ArticleDOI
TL;DR: In this article, a predictive direct power control (DPC) was proposed for three-phase pulsewidth modulation rectifier with constant switching frequency using space vector modulation (SVM).
Abstract: In this paper, we present a direct power control (DPC) of three-phase pulsewidth modulation rectifier with constant switching frequency using space-vector modulation (SVM). The developed DPC scheme is based on the predictive control strategy to achieve direct control of instantaneous active and reactive power of the converter. For this purpose, at the beginning of each switching period, the required rectifier average voltage vector allowing the cancellation of active and reactive power tracking errors, at the end of the switching period, is calculated by means of predictive control algorithm in the sense of deadbeat control. The main advantages of the proposed control, compared to the works published in this subject, are that no need to use predefined switching table and voltage vector or virtual flux position, PI-based active and reactive power control loops are not necessary and constant-switching frequency. The proposed predictive direct power control was tested both in simulations and experimentally and compared with DPC using switching table. Results have proved excellent performance, and verify the validity of the proposed DPC scheme, which is much better than conventional DPC using switching table.

342 citations

Journal ArticleDOI
TL;DR: This paper proposes a novel and simple direct power control (DPC) scheme of a three-phase pulsewidth-modulated rectifier without the use of a predefined switching table, and proves the validity of the proposed DPC scheme which is much better than the classical DPC.
Abstract: This paper proposes a novel and simple direct power control (DPC) scheme of a three-phase pulsewidth-modulated rectifier without the use of a predefined switching table. The converter switching state selection is based on fuzzy logic rules, using the instantaneous active and reactive power tracking errors as fuzzy logic variables. The basic idea of fuzzy rules synthesis is based on the knowledge of the instantaneous variation of active and reactive power. According to the input fuzzy variables and in a specific moment, the best switching state of the converter is chosen to restrict the instantaneous active and reactive power tracking errors simultaneously, for maintaining the DC-bus voltage close to the reference value and guarantying the unity-power-factor operation. The main advantages of the proposed DPC scheme, compared to the classical one, are that it is not necessary to use hysteresis comparators, and smooth control of active and reactive power is obtained during all sectors. Finally, the developed DPC was tested both in simulations and experimentally, and illustrative results are presented here. Results have proven excellent performance, and verify the validity of the proposed DPC scheme which is much better than the classical DPC.

175 citations

Journal ArticleDOI
TL;DR: Simulation results compared with those obtained by the conventional perturbation and observation (P&O) technique show the effectiveness of the fuzzy logic controller during steady-state and varying weather conditions.

151 citations

Journal ArticleDOI
TL;DR: In this article, the simulation and experimental study of proportional integrator (PI) controlled DC bus voltage of three phase shunt active power filter (APF) to improve power quality by compensating harmonics and reactive power required by nonlinear load is proposed.
Abstract: The simulation and experimental study of proportional integrator (PI) controlled DC bus voltage of three phase shunt active power filter (APF) to improve power quality by compensating harmonics and reactive power required by nonlinear load is proposed. The compensation process is based on sensing mains currents only, an approach different from conventional methods, which usually require harmonics or reactive volt-ampere values of the load. The non-sinusoidal mains voltage problem is resolved by using phase locked loop (PLL) system. Pulse width modulation (PWM) signal generation is based on hysteresis control comparators to obtain the switching signals.ű Various simulation and experimental results are presented under steady state and transient conditions.

89 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A survey on recent developments of analysis and design of fuzzy control systems focused on industrial applications reported after 2000 is presented.

475 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the important works on the modelling and parameters estimation of photovoltaic (PV) cells for PV simulation is presented, which provides the concepts, features, and highlights the advantages and drawbacks of three main PV cell models, namely the single diode RS-, RP- and the two-diode.

466 citations

Journal ArticleDOI
TL;DR: An attempt has been made to review the applications of fuzzy logic based models in renewable energy systems namely solar, wind, bio-energy, micro-grid and hybrid applications and indicates that fuzzy based models provide realistic estimates.
Abstract: In recent years, with the advent of globalization, the world is witnessing a steep rise in its energy consumption. The world is transforming itself into an industrial and knowledge society from an agricultural one which in turn makes the growth, energy intensive resulting in emissions. Energy modeling and energy planning is vital for the future economic prosperity and environmental security. Soft computing techniques such as fuzzy logic, neural networks, genetic algorithms are being adopted in energy modeling to precisely map the energy systems. In this paper, an attempt has been made to review the applications of fuzzy logic based models in renewable energy systems namely solar, wind, bio-energy, micro-grid and hybrid applications. It is found that fuzzy based models are extensively used in recent years for site assessment, for installing of photovoltaic/wind farms, power point tracking in solar photovoltaic/wind, optimization among conflicting criteria. The review indicates that fuzzy based models provide realistic estimates.

411 citations

Journal ArticleDOI
TL;DR: In this paper, different available MPPT algorithms are described for extracting maximum power which are classified according to the power measurement i.e. direct or indirect power controller and compared in terms of complexity, wind speed requirement, prior training, speed responses, etc.
Abstract: Wind power is the most reliable and developed renewable energy source over past decades. With the rapid penetration of the wind generators in the power system grid, it is very essential to utilize the maximum available power from the wind and to operate the wind turbine (WT) at its maximal energy conversion output. For this, the wind energy conversion system (WECS) has to track or operate at the maximum power point (MPP). A decent variety of publication report on various maximum power point tracking (MPPT) algorithms for a WECS. However, making a choice on an exact MPPT algorithm for a particular case require sufficient proficiency because each algorithm has its own merits and demerits. For this reason, an appropriate review of those algorithms is essential. However, only a few attempts have been made in this concern. In this paper, different available MPPT algorithms are described for extracting maximum power which are classified according to the power measurement i.e. direct or indirect power controller. Merits, demerits and comprehensive comparison of the different MPPT algorithms also highlighted in the terms of complexity, wind speed requirement, prior training, speed responses, etc. and also the ability to acquire the maximal energy output. This paper serves as a proper reference for future MPPT users in selecting appropriate MPPT algorithm for their requirement.

408 citations

Journal ArticleDOI
TL;DR: In this article, a state of the art review on various maximum power point techniques for solar PV systems covering timeworn conventional methods and latest soft computing algorithms is presented to date critical analysis on each of the method in terms of tracking speed, algorithm complexity, dynamic tracking under partial shading and hardware implementation is not been carried out.
Abstract: In recent years solar energy has received worldwide attention in the field of renewable energy systems Among the various research thrusts in solar PV, the most proverbial area is extracting maximum power from solar PV system Application dof Maximum Power Point Tracking (MPPT) for extracting maximum power is very much appreciated and holds the key in developing efficient solar PV system In this paper, a state of the art review on various maximum power point techniques for solar PV systems covering timeworn conventional methods and latest soft computing algorithms is presented To date critical analysis on each of the method in terms of (1) tracking speed, (2) algorithm complexity, (3) Dynamic tracking under partial shading and (4) hardware implementation is not been carried out In this regard the authors have attempted to compile a comprehensive review on various solar PV MPPT techniques based on the above criteria Further, it is envisaged that the information presented in this review paper will be a valuable gathering of information for practicing engineers as well as for new researchers

358 citations