scispace - formally typeset
Search or ask a question
Author

Fatemeh Zabihi

Bio: Fatemeh Zabihi is an academic researcher from Donghua University. The author has contributed to research in topics: Thin film & Supercritical fluid. The author has an hindex of 19, co-authored 83 publications receiving 1278 citations. Previous affiliations of Fatemeh Zabihi include Imam Khomeini International University & Islamic Azad University.


Papers
More filters
Journal ArticleDOI
Jialiang Zhou1, Zexu Hu1, Fatemeh Zabihi1, Zhigang Chen1, Meifang Zhu1 
23 Jun 2020
TL;DR: A mini-review presents the advances in antiviral materials, different mechanisms of their activity, and their potential applications in personal protective fabrics, and addresses the future challenges and directions of mask technology.
Abstract: Public health events caused by viruses pose a significant risk to humans worldwide. From December 2019 till now, the rampant novel 2019 coronavirus (SAR-CoV-2) has hugely impacted China and over world. Regarding a commendable means of protection, mask technology is relatively mature, though most of the masks cannot effectively resist the viral infections. The key material of the mask is a non-woven material, which makes the barrier of virus through filtration. Due to the lack of the ability to kill the viruses, masks are prone to cross-infection and become an additional source of infection after being discarded. If the filteration and antiviral effects can be simultaneously integrated into the mask, it will be more effcient, work for a longer time and create less difficulty in post-treatment. This mini-review presents the advances in antiviral materials, different mechanisms of their activity, and their potential applications in personal protective fabrics. Furthermore, the article addresses the future challenges and directions of mask technology.

125 citations

Journal ArticleDOI
TL;DR: In this article, the properties of PEDOT:PSS thin films and the effects of varying the processing parameters on the structure, functionality, and surface wetting of spun-on and spray-on polysilicon thin films are investigated.

112 citations

Journal ArticleDOI
TL;DR: In this paper, an artificial neural network (ANN) based on multilayer perception (MLP) algorithm was created and applied to support the rheological behavior of the prepared nano-fluids.

102 citations

Journal ArticleDOI
TL;DR: A perspective into the issues to be addressed for better and competitive fibre electrodes for wearable electrochemical energy storage applications and how these issues can be addressed are addressed.
Abstract: This perspective seeks to provide some critical insights on the challenges facing the development and adoption of fibre (yarn)-based energy storage electrodes in possible future applications of smart textiles. Attention has been given to five major points, viz. the property requirements, the associated characterization techniques, the metrics of quantifying performance, the associated materials and the goals of innovation. Beyond these points, concise conclusions consisting of recommendations have been drawn in each section. The work is intended to guide and stimulate researchers towards an effective and efficient roadmap to obtain the right and best product on the new prospective and exciting market.

101 citations

Journal ArticleDOI
TL;DR: The preliminary results demonstrate a ten-fold increase in electrical conductivity of PEDOT: PSS made by SVADC compared with the film made by conventional drop casting and simple planar perovskite solar cells made here show promising performance with an efficiency of over 3 % for a simple structure without performing process optimization or using expensive materials and treatments.
Abstract: A simple, low-cost, versatile, and potentially scalable casting method is proposed for the fabrication of micro- and nano-thin films, herein termed as ultrasonic “substrate vibration-assisted drop casting” (SVADC). The impingement of a solution drop onto a substrate in a simple process called drop casting, usually results in spreading of the liquid solution and the formation of a non-uniform thin solid film after solvent evaporation. Our previous and current supporting results, as well as few similar reports by others, confirm that imposing ultrasonic vibration on the substrate can simply convert the uncontrollable drop casting method into a controllable coating technique. Therefore, the SVADC may be used to fabricate an array of emerging thin-film solar cells, such as polymer, perovskite, and quantum-dot solar cells, as well as other small thin-film devices, in a roll-to-roll and automated fabrication process. The preliminary results demonstrate a ten-fold increase in electrical conductivity of PEDOT: PSS made by SVADC compared with the film made by conventional drop casting. Also, simple planar perovskite solar cells made here using SVADC show promising performance with an efficiency of over 3 % for a simple structure without performing process optimization or using expensive materials and treatments.

79 citations


Cited by
More filters
01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations

Journal ArticleDOI
TL;DR: The present paper provides comprehensive information on the green extraction technologies of natural antioxidants, assessment of antioxidant activity at chemical and cellular based levels and their main resources from food and medicinal plants.
Abstract: Natural antioxidants are widely distributed in food and medicinal plants. These natural antioxidants, especially polyphenols and carotenoids, exhibit a wide range of biological effects, including anti-inflammatory, anti-aging, anti-atherosclerosis and anticancer. The effective extraction and proper assessment of antioxidants from food and medicinal plants are crucial to explore the potential antioxidant sources and promote the application in functional foods, pharmaceuticals and food additives. The present paper provides comprehensive information on the green extraction technologies of natural antioxidants, assessment of antioxidant activity at chemical and cellular based levels and their main resources from food and medicinal plants.

638 citations

Journal ArticleDOI
TL;DR: The exfoliation strategies of graphite and other layered crystals are reviewed, along with the advances in the sorting of lateral size and thickness of the exfoliated sheets together with the formulation of functional inks and the current development of printing/coating processes of interest for the realization of 2D-crystal-based devices.
Abstract: The possibility to produce and process graphene, related 2D crystals, and heterostructures in the liquid phase makes them promising materials for an ever-growing class of applications as composite materials, sensors, in flexible optoelectronics, and energy storage and conversion. In particular, the ability to formulate functional inks with on-demand rheological and morphological properties, i.e., lateral size and thickness of the dispersed 2D crystals, is a step forward toward the development of industrial-scale, reliable, inexpensive printing/coating processes, a boost for the full exploitation of such nanomaterials. Here, the exfoliation strategies of graphite and other layered crystals are reviewed, along with the advances in the sorting of lateral size and thickness of the exfoliated sheets together with the formulation of functional inks and the current development of printing/coating processes of interest for the realization of 2D-crystal-based devices.

386 citations

Journal ArticleDOI
TL;DR: This review underlines not only the strategies developed to suppress the coffee-ring effect but also sheds light on approaches to arrive at novel processes and materials.

376 citations

Journal ArticleDOI
TL;DR: In this paper, current research progress of transition metal-based battery-type materials in hybrid supercapacitors is reviewed, and conclusive remarks and opinions for future development of high performance HSCs are proposed with the intention to provide some clues for build-up of high rate and long life energy storage systems.

360 citations