scispace - formally typeset
Search or ask a question
Author

Fatih Hamzaoglu

Other affiliations: University of Virginia
Bio: Fatih Hamzaoglu is an academic researcher from Intel. The author has contributed to research in topics: Static random-access memory & CMOS. The author has an hindex of 27, co-authored 72 publications receiving 2496 citations. Previous affiliations of Fatih Hamzaoglu include University of Virginia.


Papers
More filters
Journal ArticleDOI
27 Dec 2005
TL;DR: In this article, a column-based dynamic power supply has been integrated into a high-frequency 70-Mb SRAM design that is fabricated on a high performance 65-nm CMOS technology.
Abstract: Column-based dynamic power supply has been integrated into a high-frequency 70-Mb SRAM design that is fabricated on a high-performance 65-nm CMOS technology. The fully synchronized design achieves a 3-GHz operating frequency at 1.1-V power supply. The power supply at SRAM cell array is dynamically switched between two different voltage levels during READ and WRITE operations. Silicon measurement has proven this method to be effective in achieving both good cell READ and WRITE margins, while lowering the overall SRAM leakage power consumption.

359 citations

Journal ArticleDOI
TL;DR: In this paper, a 70-Mb SRAM was designed and fabricated on a 65-nm CMOS technology, which features a 0.57-/spl mu/m/sup 2/6T SRAM cell with large noise margin down to 0.7 V for low-voltage operation.
Abstract: A 70-Mb SRAM is designed and fabricated on a 65-nm CMOS technology. It features a 0.57-/spl mu/m/sup 2/ 6T SRAM cell with large noise margin down to 0.7 V for low-voltage operation. The fully synchronized subarray contains an integrated leakage reduction scheme with dynamically controlled sleep transistor. SRAM virtual ground in standby is controlled by programmable bias transistors to achieve good voltage control with fine granularity under process skew. It also has a built-in programmable defect "screen" circuit for high volume manufacturing. The measurements showed that the SRAM leakage can be reduced by 3-5/spl times/ while maintaining the integrity of stored data.

216 citations

Proceedings ArticleDOI
03 Apr 2012
TL;DR: A high-performance, voltage-scalable 162Mb SRAM array is developed in a 22nm tri-gate bulk technology featuring 3rd-generation high-k metal-gate transistors and 5th-generation strained silicon to address process variation and fin quantization at 22nm.
Abstract: Future product applications demand increasing performance with reduced power consumption, which motivates the pursuit of high-performance at reduced operating voltages. Random and systematic device variations pose significant challenges to SRAM V MIN and low-voltage performance as technology scaling follows Moore's law to the 22nm node. A high-performance, voltage-scalable 162Mb SRAM array is developed in a 22nm tri-gate bulk technology featuring 3rd-generation high-k metal-gate transistors and 5th-generation strained silicon. Tri-gate technology reduces short-channel effects (SCE) and improves subthreshold slope to provide 37% improved device performance at 0.7V. Continuous device width sizing in planar technology is replaced by combining parallel silicon fins to multiply drive current. Process-circuit co-optimization of transient voltage collapse write assist (TVC-WA) and wordline underdrive read assist (WLUD-RA) features address process variation and fin quantization at 22nm and enable a 175mV reduction in the supply voltage required for 2GHz SRAM operation. Figure 13.1.1 shows an SEM top-down view of a 0.092μm2 high-density 6T SRAM bitcell (HDC) and a 0.108μm2 low-voltage 6T SRAM cell (LVC) after gate and diffusion processing. Computational OPC/RET techniques extend the capabilities of 193nm immersion lithography to allow a 1.85× increase in array density relative to 32nm designs [1].

177 citations

Proceedings ArticleDOI
12 Aug 2002
TL;DR: This work proposes several circuit techniques to control gate leakage based on the fact that PMOS transistors with SiO2 gate oxide have an order of magnitude smaller gate leakage than NMOS transistor in the same technology.
Abstract: Although still negligible for state-of-the-art CMOS, gate leakage will become significant in the future for sub-100 nm technologies, due to the scaling of oxide thickness. We propose several circuit techniques to control gate leakage based on the fact that PMOS transistors with SiO/sub 2/ gate oxide have an order of magnitude smaller gate leakage than NMOS transistors in the same technology. First, we compare n-type domino with p-type domino circuits in terms of performance, leakage and switching power, and explore the different trade-offs between performance and power. Second, we compare n-type with p-type gating for MTCMOS to control the leakage during sleep. The proposed circuits are simulated for a predictive 70 nm CMOS technology with 10 /spl Aring/ gate oxide thickness and 1.2 V supply voltage.

132 citations

Proceedings ArticleDOI
01 Dec 2018
TL;DR: Embedded NVM technology presented here achieves 200°C 10-year retention capability combined with>106 cycle endurance and high die yield, and is demonstrated on 7.2Mbit arrays.
Abstract: This paper presents key features of MRAM-based non-volatile memory embedded into Intel 22FFL technology. 22FFL is a high performance, ultra low power FinFET technology for mobile and RF applications with extensive high voltage and analog support, and a high level of design flexibility at low cost1. Embedded NVM technology presented here achieves 200°C 10-year retention capability combined with>106 cycle endurance and high die yield. Technology data retention, endurance and yield capabilities are demonstrated on 7.2Mbit arrays. We describe device-level MTJ characteristics, key integration features, cell characteristics, array operation specifics, as well as key yield milestones.

128 citations


Cited by
More filters
Journal ArticleDOI
29 Apr 2003
TL;DR: Channel engineering techniques including retrograde well and halo doping are explained as means to manage short-channel effects for continuous scaling of CMOS devices and different circuit techniques to reduce the leakage power consumption are explored.
Abstract: High leakage current in deep-submicrometer regimes is becoming a significant contributor to power dissipation of CMOS circuits as threshold voltage, channel length, and gate oxide thickness are reduced. Consequently, the identification and modeling of different leakage components is very important for estimation and reduction of leakage power, especially for low-power applications. This paper reviews various transistor intrinsic leakage mechanisms, including weak inversion, drain-induced barrier lowering, gate-induced drain leakage, and gate oxide tunneling. Channel engineering techniques including retrograde well and halo doping are explained as means to manage short-channel effects for continuous scaling of CMOS devices. Finally, the paper explores different circuit techniques to reduce the leakage power consumption.

2,281 citations

Book
10 Sep 2007
TL;DR: Is your memory hierarchy stopping your microprocessor from performing at the high level it should be?
Abstract: Is your memory hierarchy stopping your microprocessor from performing at the high level it should be? Memory Systems: Cache, DRAM, Disk shows you how to resolve this problem. The book tells you everything you need to know about the logical design and operation, physical design and operation, performance characteristics and resulting design trade-offs, and the energy consumption of modern memory hierarchies. You learn how to to tackle the challenging optimization problems that result from the side-effects that can appear at any point in the entire hierarchy.As a result you will be able to design and emulate the entire memory hierarchy. . Understand all levels of the system hierarchy -Xcache, DRAM, and disk. . Evaluate the system-level effects of all design choices. . Model performance and energy consumption for each component in the memory hierarchy.

659 citations

Journal ArticleDOI
TL;DR: This Review surveys the four physical mechanisms that lead to resistive switching materials enable novel, in-memory information processing, which may resolve the von Neumann bottleneck and examines the device requirements for systems based on RSMs.
Abstract: The rapid increase in information in the big-data era calls for changes to information-processing paradigms, which, in turn, demand new circuit-building blocks to overcome the decreasing cost-effectiveness of transistor scaling and the intrinsic inefficiency of using transistors in non-von Neumann computing architectures. Accordingly, resistive switching materials (RSMs) based on different physical principles have emerged for memories that could enable energy-efficient and area-efficient in-memory computing. In this Review, we survey the four physical mechanisms that lead to such resistive switching: redox reactions, phase transitions, spin-polarized tunnelling and ferroelectric polarization. We discuss how these mechanisms equip RSMs with desirable properties for representation capability, switching speed and energy, reliability and device density. These properties are the key enablers of processing-in-memory platforms, with applications ranging from neuromorphic computing and general-purpose memcomputing to cybersecurity. Finally, we examine the device requirements for such systems based on RSMs and provide suggestions to address challenges in materials engineering, device optimization, system integration and algorithm design. Resistive switching materials enable novel, in-memory information processing, which may resolve the von Neumann bottleneck. This Review focuses on how the switching mechanisms and the resultant electrical properties lead to various computing applications.

564 citations

Journal ArticleDOI
TL;DR: This paper presents Ramulator, a fast and cycle-accurate DRAM simulator that is built from the ground up for extensibility, and is able to provide out-of-the-box support for a wide array of DRAM standards.
Abstract: Recently, both industry and academia have proposed many different roadmaps for the future of DRAM. Consequently, there is a growing need for an extensible DRAM simulator, which can be easily modified to judge the merits of today's DRAM standards as well as those of tomorrow. In this paper, we present Ramulator , a fast and cycle-accurate DRAM simulator that is built from the ground up for extensibility. Unlike existing simulators, Ramulator is based on a generalized template for modeling a DRAM system, which is only later infused with the specific details of a DRAM standard. Thanks to such a decoupled and modular design, Ramulator is able to provide out-of-the-box support for a wide array of DRAM standards: DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, as well as some academic proposals (SALP, AL-DRAM, TL-DRAM, RowClone, and SARP). Importantly, Ramulator does not sacrifice simulation speed to gain extensibility: according to our evaluations, Ramulator is 2.5 $\times$ faster than the next fastest simulator. Ramulator is released under the permissive BSD license.

535 citations