scispace - formally typeset
Search or ask a question
Author

Fatih Porikli

Bio: Fatih Porikli is an academic researcher from Australian National University. The author has contributed to research in topics: Video tracking & Pixel. The author has an hindex of 66, co-authored 412 publications receiving 20807 citations. Previous affiliations of Fatih Porikli include Commonwealth Scientific and Industrial Research Organisation & Huawei.


Papers
More filters
Book ChapterDOI
07 May 2006
TL;DR: A fast method for computation of covariances based on integral images, and the performance of the covariance features is superior to other methods, as it is shown, and large rotations and illumination changes are also absorbed by the covariances matrix.
Abstract: We describe a new region descriptor and apply it to two problems, object detection and texture classification. The covariance of d-features, e.g., the three-dimensional color vector, the norm of first and second derivatives of intensity with respect to x and y, etc., characterizes a region of interest. We describe a fast method for computation of covariances based on integral images. The idea presented here is more general than the image sums or histograms, which were already published before, and with a series of integral images the covariances are obtained by a few arithmetic operations. Covariance matrices do not lie on Euclidean space, therefore we use a distance metric involving generalized eigenvalues which also follows from the Lie group structure of positive definite matrices. Feature matching is a simple nearest neighbor search under the distance metric and performed extremely rapidly using the integral images. The performance of the covariance features is superior to other methods, as it is shown, and large rotations and illumination changes are also absorbed by the covariance matrix.

1,338 citations

Journal Article
TL;DR: In this paper, a fast method for computation of covariance matrices based on integral images is described, which is more general than the image sums or histograms, which were already published before, and with a series of integral images the covariances are obtained by a few arithmetic operations.
Abstract: We describe a new region descriptor and apply it to two problems, object detection and texture classification. The covariance of d-features, e.g., the three-dimensional color vector, the norm of first and second derivatives of intensity with respect to x and y, etc., characterizes a region of interest. We describe a fast method for computation of covariances based on integral images. The idea presented here is more general than the image sums or histograms, which were already published before, and with a series of integral images the covariances are obtained by a few arithmetic operations. Covariance matrices do not lie on Euclidean space, therefore we use a distance metric involving generalized eigenvalues which also follows from the Lie group structure of positive definite matrices. Feature matching is a simple nearest neighbor search under the distance metric and performed extremely rapidly using the integral images. The performance of the covariance features is superior to other methods, as it is shown, and large rotations and illumination changes are also absorbed by the covariance matrix.

1,057 citations

Journal ArticleDOI
TL;DR: A novel approach for classifying points lying on a connected Riemannian manifold using the geometry of the space of d-dimensional nonsingular covariance matrices as object descriptors.
Abstract: We present a new algorithm to detect pedestrian in still images utilizing covariance matrices as object descriptors. Since the descriptors do not form a vector space, well known machine learning techniques are not well suited to learn the classifiers. The space of d-dimensional nonsingular covariance matrices can be represented as a connected Riemannian manifold. The main contribution of the paper is a novel approach for classifying points lying on a connected Riemannian manifold using the geometry of the space. The algorithm is tested on INRIA and DaimlerChrysler pedestrian datasets where superior detection rates are observed over the previous approaches.

1,044 citations

Posted Content
TL;DR: A comprehensive review of recent pioneering efforts in semantic and instance segmentation, including convolutional pixel-labeling networks, encoder-decoder architectures, multiscale and pyramid-based approaches, recurrent networks, visual attention models, and generative models in adversarial settings are provided.
Abstract: Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.

950 citations

Journal ArticleDOI
TL;DR: A comprehensive review of deep learning-based image segmentation can be found in this article, where the authors investigate the relationships, strengths, and challenges of these DL-based models, examine the widely used datasets, compare performances, and discuss promising research directions.
Abstract: Image segmentation is a key task in computer vision and image processing with important applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among others, and numerous segmentation algorithms are found in the literature. Against this backdrop, the broad success of Deep Learning (DL) has prompted the development of new image segmentation approaches leveraging DL models. We provide a comprehensive review of this recent literature, covering the spectrum of pioneering efforts in semantic and instance segmentation, including convolutional pixel-labeling networks, encoder-decoder architectures, multiscale and pyramid-based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the relationships, strengths, and challenges of these DL-based segmentation models, examine the widely used datasets, compare performances, and discuss promising research directions.

827 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Proceedings ArticleDOI
21 Jul 2017
TL;DR: SRGAN as mentioned in this paper proposes a perceptual loss function which consists of an adversarial loss and a content loss, which pushes the solution to the natural image manifold using a discriminator network that is trained to differentiate between the super-resolved images and original photo-realistic images.
Abstract: Despite the breakthroughs in accuracy and speed of single image super-resolution using faster and deeper convolutional neural networks, one central problem remains largely unsolved: how do we recover the finer texture details when we super-resolve at large upscaling factors? The behavior of optimization-based super-resolution methods is principally driven by the choice of the objective function. Recent work has largely focused on minimizing the mean squared reconstruction error. The resulting estimates have high peak signal-to-noise ratios, but they are often lacking high-frequency details and are perceptually unsatisfying in the sense that they fail to match the fidelity expected at the higher resolution. In this paper, we present SRGAN, a generative adversarial network (GAN) for image super-resolution (SR). To our knowledge, it is the first framework capable of inferring photo-realistic natural images for 4x upscaling factors. To achieve this, we propose a perceptual loss function which consists of an adversarial loss and a content loss. The adversarial loss pushes our solution to the natural image manifold using a discriminator network that is trained to differentiate between the super-resolved images and original photo-realistic images. In addition, we use a content loss motivated by perceptual similarity instead of similarity in pixel space. Our deep residual network is able to recover photo-realistic textures from heavily downsampled images on public benchmarks. An extensive mean-opinion-score (MOS) test shows hugely significant gains in perceptual quality using SRGAN. The MOS scores obtained with SRGAN are closer to those of the original high-resolution images than to those obtained with any state-of-the-art method.

6,884 citations

Journal ArticleDOI
TL;DR: The guided filter is a novel explicit image filter derived from a local linear model that can be used as an edge-preserving smoothing operator like the popular bilateral filter, but it has better behaviors near edges.
Abstract: In this paper, we propose a novel explicit image filter called guided filter. Derived from a local linear model, the guided filter computes the filtering output by considering the content of a guidance image, which can be the input image itself or another different image. The guided filter can be used as an edge-preserving smoothing operator like the popular bilateral filter [1], but it has better behaviors near edges. The guided filter is also a more generic concept beyond smoothing: It can transfer the structures of the guidance image to the filtering output, enabling new filtering applications like dehazing and guided feathering. Moreover, the guided filter naturally has a fast and nonapproximate linear time algorithm, regardless of the kernel size and the intensity range. Currently, it is one of the fastest edge-preserving filters. Experiments show that the guided filter is both effective and efficient in a great variety of computer vision and computer graphics applications, including edge-aware smoothing, detail enhancement, HDR compression, image matting/feathering, dehazing, joint upsampling, etc.

4,730 citations

Posted Content
TL;DR: SRGAN, a generative adversarial network (GAN) for image super-resolution (SR), is presented, to its knowledge, the first framework capable of inferring photo-realistic natural images for 4x upscaling factors and a perceptual loss function which consists of an adversarial loss and a content loss.
Abstract: Despite the breakthroughs in accuracy and speed of single image super-resolution using faster and deeper convolutional neural networks, one central problem remains largely unsolved: how do we recover the finer texture details when we super-resolve at large upscaling factors? The behavior of optimization-based super-resolution methods is principally driven by the choice of the objective function. Recent work has largely focused on minimizing the mean squared reconstruction error. The resulting estimates have high peak signal-to-noise ratios, but they are often lacking high-frequency details and are perceptually unsatisfying in the sense that they fail to match the fidelity expected at the higher resolution. In this paper, we present SRGAN, a generative adversarial network (GAN) for image super-resolution (SR). To our knowledge, it is the first framework capable of inferring photo-realistic natural images for 4x upscaling factors. To achieve this, we propose a perceptual loss function which consists of an adversarial loss and a content loss. The adversarial loss pushes our solution to the natural image manifold using a discriminator network that is trained to differentiate between the super-resolved images and original photo-realistic images. In addition, we use a content loss motivated by perceptual similarity instead of similarity in pixel space. Our deep residual network is able to recover photo-realistic textures from heavily downsampled images on public benchmarks. An extensive mean-opinion-score (MOS) test shows hugely significant gains in perceptual quality using SRGAN. The MOS scores obtained with SRGAN are closer to those of the original high-resolution images than to those obtained with any state-of-the-art method.

4,404 citations