scispace - formally typeset
Search or ask a question
Author

Fatih Selimefendigil

Bio: Fatih Selimefendigil is an academic researcher from Celal Bayar University. The author has contributed to research in topics: Nanofluid & Heat transfer. The author has an hindex of 43, co-authored 178 publications receiving 4522 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a numerical study of MHD mixed convection nanofluid filled lid driven square enclosure was performed, where bottom wall of the cavity is heated and the top wall is kept at constant temperature lower than that of the heater.

182 citations

Journal ArticleDOI
TL;DR: In this article, the authors used a triangular wave form of conductive corrugated partition for free convection in a cavity with a corrugation partition which have different fluids on different parts of the partition was numerically examined.

178 citations

Journal ArticleDOI
TL;DR: In this paper, a mixed convection of CuO-water nanofluid filled lid driven cavity having its upper and lower triangular domains under the influence of inclined magnetic fields is numerically investigated.

159 citations

Journal ArticleDOI
TL;DR: In this article, the effects of magnetic dipole strength and cylinder rotation angle on heat transfer enhancement and fluid flow characteristics of a rotating cylinder under the influence of the magnetic dipoles in backward facing step geometry were analyzed.

140 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated conjugate natural convection-conduction heat transfer in an inclined partitioned cavity filled with different nanofluids on different sides of the partition is numerically investigated by using finite element method.

137 citations


Cited by
More filters
01 Jan 2007

1,932 citations

Book ChapterDOI
01 Jan 1997
TL;DR: This chapter introduces the finite element method (FEM) as a tool for solution of classical electromagnetic problems and discusses the main points in the application to electromagnetic design, including formulation and implementation.
Abstract: This chapter introduces the finite element method (FEM) as a tool for solution of classical electromagnetic problems. Although we discuss the main points in the application of the finite element method to electromagnetic design, including formulation and implementation, those who seek deeper understanding of the finite element method should consult some of the works listed in the bibliography section.

1,820 citations

Book ChapterDOI
28 Jan 2005
TL;DR: The Q12-40 density: ρ ((kg/m) specific heat: Cp (J/kg ·K) dynamic viscosity: ν ≡ μ/ρ (m/s) thermal conductivity: k, (W/m ·K), thermal diffusivity: α, ≡ k/(ρ · Cp) (m /s) Prandtl number: Pr, ≡ ν/α (−−) volumetric compressibility: β, (1/K).
Abstract: Geometry: shape, size, aspect ratio and orientation Flow Type: forced, natural, laminar, turbulent, internal, external Boundary: isothermal (Tw = constant) or isoflux (q̇w = constant) Fluid Type: viscous oil, water, gases or liquid metals Properties: all properties determined at film temperature Tf = (Tw + T∞)/2 Note: ρ and ν ∝ 1/Patm ⇒ see Q12-40 density: ρ ((kg/m) specific heat: Cp (J/kg ·K) dynamic viscosity: μ, (N · s/m) kinematic viscosity: ν ≡ μ/ρ (m/s) thermal conductivity: k, (W/m ·K) thermal diffusivity: α, ≡ k/(ρ · Cp) (m/s) Prandtl number: Pr, ≡ ν/α (−−) volumetric compressibility: β, (1/K)

636 citations

Journal ArticleDOI
01 Oct 2014-Energy
TL;DR: In this paper, the influence of an external magnetic field on ferrofluid flow and heat transfer in a semi annulus enclosure with sinusoidal hot wall is investigated and the governing equations which are derived by considering the both effects of FHD and MHD (Magnetohydrodynamic) are solved via CVFEM (Control Volume based Finite Element Method).

393 citations