scispace - formally typeset
Search or ask a question
Author

Fausto Grignani

Bio: Fausto Grignani is an academic researcher from University of Perugia. The author has contributed to research in topics: Acute promyelocytic leukemia & Leukemia. The author has an hindex of 33, co-authored 112 publications receiving 11486 citations. Previous affiliations of Fausto Grignani include French Institute of Health and Medical Research.


Papers
More filters
Journal ArticleDOI
TL;DR: A flow cytometric method for measuring the percentage of apoptotic nuclei after propidium iodide staining in hypotonic buffer is developed and shown an excellent correlation with the results obtained with both electrophoretic and colorimetric methods.

4,660 citations

Journal ArticleDOI
10 Jul 1992-Cell
TL;DR: The results suggest that the SHC gene products couple activated growth factor receptors to a signaling pathway that regulates the proliferation of mammalian cells.

1,355 citations

Journal ArticleDOI
19 Feb 1998-Nature
TL;DR: It is shown that both PML–RARα and PLZF–Rarα fusion proteins recruit the nuclear co-repressor (N-CoR)–histone deacetylase complex through the RARα CoR box, which determines the differential response of APLs to RA.
Abstract: The transforming proteins of acute promyelocytic leukaemias (APL) are fusions of the promyelocytic leukaemia (PML) and the promyelocytic leukaemia zinc-finger (PLZF) proteins with retinoic acid receptor-alpha (RARalpha). These proteins retain the RARalpha DNA- and retinoic acid (RA)-binding domains, and their ability to block haematopoietic differentiation depends on the RARalpha DNA-binding domain. Thus RA-target genes are downstream effectors. However, treatment with RA induces differentiation of leukaemic blast cells and disease remission in PML-RARalpha APLs, whereas PLZF-RARa APLs are resistant to RA. Transcriptional regulation by RARs involves modifications of chromatin by histone deacetylases, which are recruited to RA-target genes by nuclear co-repressors. Here we show that both PML-RARalpha and PLZF-RARalpha fusion proteins recruit the nuclear co-repressor (N-CoR)-histone deacetylase complex through the RARalpha CoR box. PLZF-RARalpha contains a second, RA-resistant binding site in the PLZF amino-terminal region. High doses of RA release histone deacetylase activity from PML-RARalpha, but not from PLZF-RARalpha. Mutation of the N-CoR binding site abolishes the ability of PML-RARalpha to block differentiation, whereas inhibition of histone deacetylase activity switches the transcriptional and biological effects of PLZF-RARalpha from being an inhibitor to an activator of the RA signalling pathway. Therefore, recruitment of histone deacetylase is crucial to the transforming potential of APL fusion proteins, and the different effects of RA on the stability of the PML-RARalpha and PLZF-RARalpha co-repressor complexes determines the differential response of APLs to RA.

1,042 citations

Journal ArticleDOI
13 Aug 1993-Cell
TL;DR: Expressing the PML-RAR alpha protein in U937 myeloid precursor cells showed that they lost the capacity to differentiate under the action of different stimuli, acquired enhanced sensitivity to retinoic acid, and exhibited a higher growth rate consequent to diminished apoptotic cell death.

607 citations

Journal Article
TL;DR: The high viral titer and the easy obtainment of homogeneously infected cell populations without drug selection procedures make PINCO an ideal vector for gene transfer of human primary hemopoietic cells.
Abstract: We report a retroviral expression vector (PINCO) that allows high-efficiency gene transfer and selection of hemopoietic progenitor cells (HPCs). The main characteristics of this vector are the presence outside the two long terminal repeats of the EBV origin of replication and the EBNA-1 gene and the presence in the retrovirus of the cDNA that encodes for the enhanced green fluorescence protein (GFP), controlled by a cytomegalovirus promoter. Transient transfection of PINCO in Phoenix packaging cells results in episomal propagation of the plasmid and generates viral titers as high as 10 7 colony-forming units/ml. Infection of established cell lines with the PINCO retrovirus yields more than 95% GFP-expressing cells. GFP expression remains stable for months in infected cell cultures and can easily be monitored by fluorescent microscopy or fluorescence-activated cell-sorting (FACS) analysis of living cells. The PINCO vector allows efficient expression of a second gene (thymidine kinase, Shc, and PML), and there is strict correlation between GFP and second gene expression levels in the infected cells. PINCO was used to infect human HPCs; infection efficiency was about 50%. GFP-positive cells can be FACS sorted to yield a homogeneous population of infected cells. FACS-sorted GFP-positive HPC cells have, with respect to unfractionated HPC cells, the same frequency of long-term culture initiating cells and an identical capacity to undergo multilineage and unilineage differentiation. The entire gene transfer procedure, from the transfection of the packaging cell line to the infection of target cells, requires less than a week. The high viral titer and the easy obtainment of homogeneously infected cell populations without drug selection procedures make PINCO an ideal vector for gene transfer of human primary hemopoietic cells.

379 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The extent of tissue-PCD revealed by this method is considerably greater than apoptosis detected by nuclear morphology, and thus opens the way for a variety of studies.
Abstract: Programmed cell death (PCD) plays a key role in developmental biology and in maintenance of the steady state in continuously renewing tissues. Currently, its existence is inferred mainly from gel electrophoresis of a pooled DNA extract as PCD was shown to be associated with DNA fragmentation. Based on this observation, we describe here the development of a method for the in situ visualization of PCD at the single-cell level, while preserving tissue architecture. Conventional histological sections, pretreated with protease, were nick end labeled with biotinylated poly dU, introduced by terminal deoxy-transferase, and then stained using avidin-conjugated peroxidase. The reaction is specific, only nuclei located at positions where PCD is expected are stained. The initial screening includes: small and large intestine, epidermis, lymphoid tissues, ovary, and other organs. A detailed analysis revealed that the process is initiated at the nuclear periphery, it is relatively short (1-3 h from initiation to cell elimination) and that PCD appears in tissues in clusters. The extent of tissue-PCD revealed by this method is considerably greater than apoptosis detected by nuclear morphology, and thus opens the way for a variety of studies.

9,597 citations

Journal ArticleDOI
TL;DR: The Annexin V assay offers the possibility of detecting early phases of apoptosis before the loss of cell membrane integrity and permits measurements of the kinetics of apoptotic death in relation to the cell cycle.

5,291 citations

Journal Article
TL;DR: Western medicine has not yet used flavonoids therapeutically, even though their safety record is exceptional, and suggestions are made where such possibilities may be worth pursuing.
Abstract: Flavonoids are nearly ubiquitous in plants and are recognized as the pigments responsible for the colors of leaves, especially in autumn. They are rich in seeds, citrus fruits, olive oil, tea, and red wine. They are low molecular weight compounds composed of a three-ring structure with various substitutions. This basic structure is shared by tocopherols (vitamin E). Flavonoids can be subdivided according to the presence of an oxy group at position 4, a double bond between carbon atoms 2 and 3, or a hydroxyl group in position 3 of the C (middle) ring. These characteristics appear to also be required for best activity, especially antioxidant and antiproliferative, in the systems studied. The particular hydroxylation pattern of the B ring of the flavonoles increases their activities, especially in inhibition of mast cell secretion. Certain plants and spices containing flavonoids have been used for thousands of years in traditional Eastern medicine. In spite of the voluminous literature available, however, Western medicine has not yet used flavonoids therapeutically, even though their safety record is exceptional. Suggestions are made where such possibilities may be worth pursuing.

4,663 citations

Journal ArticleDOI
15 Feb 2001-Nature
TL;DR: A structural polymeric material with the ability to autonomically heal cracks is reported, which incorporates a microencapsulated healing agent that is released upon crack intrusion and polymerization of the healing agent is triggered by contact with an embedded catalyst, bonding the crack faces.
Abstract: Structural polymers are susceptible to damage in the form of cracks, which form deep within the structure where detection is difficult and repair is almost impossible. Cracking leads to mechanical degradation of fibre-reinforced polymer composites; in microelectronic polymeric components it can also lead to electrical failure. Microcracking induced by thermal and mechanical fatigue is also a long-standing problem in polymer adhesives. Regardless of the application, once cracks have formed within polymeric materials, the integrity of the structure is significantly compromised. Experiments exploring the concept of self-repair have been previously reported, but the only successful crack-healing methods that have been reported so far require some form of manual intervention. Here we report a structural polymeric material with the ability to autonomically heal cracks. The material incorporates a microencapsulated healing agent that is released upon crack intrusion. Polymerization of the healing agent is then triggered by contact with an embedded catalyst, bonding the crack faces. Our fracture experiments yield as much as 75% recovery in toughness, and we expect that our approach will be applicable to other brittle materials systems (including ceramics and glasses).

3,786 citations

Journal ArticleDOI
03 Nov 2006-Cell
TL;DR: A general mass spectrometric technology is developed and applied for identification and quantitation of phosphorylation sites as a function of stimulus, time, and subcellular location to provide a missing link in a global, integrative view of cellular regulation.

3,404 citations