scispace - formally typeset
Search or ask a question
Author

Fayao Liu

Bio: Fayao Liu is an academic researcher from Institute for Infocomm Research Singapore. The author has contributed to research in topics: Computer science & Convolutional neural network. The author has an hindex of 16, co-authored 45 publications receiving 3156 citations. Previous affiliations of Fayao Liu include University of Adelaide & Agency for Science, Technology and Research.


Papers
More filters
Journal ArticleDOI
TL;DR: A deep convolutional neural field model for estimating depths from single monocular images, aiming to jointly explore the capacity of deep CNN and continuous CRF is presented, and a deep structured learning scheme which learns the unary and pairwise potentials of continuousCRF in a unified deep CNN framework is proposed.
Abstract: In this article, we tackle the problem of depth estimation from single monocular images. Compared with depth estimation using multiple images such as stereo depth perception, depth from monocular images is much more challenging. Prior work typically focuses on exploiting geometric priors or additional sources of information, most using hand-crafted features. Recently, there is mounting evidence that features from deep convolutional neural networks (CNN) set new records for various vision applications. On the other hand, considering the continuous characteristic of the depth values, depth estimation can be naturally formulated as a continuous conditional random field (CRF) learning problem. Therefore, here we present a deep convolutional neural field model for estimating depths from single monocular images, aiming to jointly explore the capacity of deep CNN and continuous CRF. In particular, we propose a deep structured learning scheme which learns the unary and pairwise potentials of continuous CRF in a unified deep CNN framework. We then further propose an equally effective model based on fully convolutional networks and a novel superpixel pooling method, which is about 10 times faster, to speedup the patch-wise convolutions in the deep model. With this more efficient model, we are able to design deeper networks to pursue better performance. Our proposed method can be used for depth estimation of general scenes with no geometric priors nor any extra information injected. In our case, the integral of the partition function can be calculated in a closed form such that we can exactly solve the log-likelihood maximization. Moreover, solving the inference problem for predicting depths of a test image is highly efficient as closed-form solutions exist. Experiments on both indoor and outdoor scene datasets demonstrate that the proposed method outperforms state-of-the-art depth estimation approaches.

1,229 citations

Posted Content
TL;DR: A deep structured learning scheme which learns the unary and pairwise potentials of continuous CRF in a unified deep CNN framework and can be used for depth estimations of general scenes with no geometric priors nor any extra information injected.
Abstract: We consider the problem of depth estimation from a single monocular image in this work. It is a challenging task as no reliable depth cues are available, e.g., stereo correspondences, motions, etc. Previous efforts have been focusing on exploiting geometric priors or additional sources of information, with all using hand-crafted features. Recently, there is mounting evidence that features from deep convolutional neural networks (CNN) are setting new records for various vision applications. On the other hand, considering the continuous characteristic of the depth values, depth estimations can be naturally formulated into a continuous conditional random field (CRF) learning problem. Therefore, we in this paper present a deep convolutional neural field model for estimating depths from a single image, aiming to jointly explore the capacity of deep CNN and continuous CRF. Specifically, we propose a deep structured learning scheme which learns the unary and pairwise potentials of continuous CRF in a unified deep CNN framework. The proposed method can be used for depth estimations of general scenes with no geometric priors nor any extra information injected. In our case, the integral of the partition function can be analytically calculated, thus we can exactly solve the log-likelihood optimization. Moreover, solving the MAP problem for predicting depths of a new image is highly efficient as closed-form solutions exist. We experimentally demonstrate that the proposed method outperforms state-of-the-art depth estimation methods on both indoor and outdoor scene datasets.

643 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Zhang et al. as mentioned in this paper proposed a deep convolutional neural field model for depth estimation from a single image, aiming to jointly explore the capacity of deep CNN and continuous CRF.
Abstract: We consider the problem of depth estimation from a single monocular image in this work. It is a challenging task as no reliable depth cues are available, e.g., stereo correspondences, motions etc. Previous efforts have been focusing on exploiting geometric priors or additional sources of information, with all using hand-crafted features. Recently, there is mounting evidence that features from deep convolutional neural networks (CNN) are setting new records for various vision applications. On the other hand, considering the continuous characteristic of the depth values, depth estimations can be naturally formulated into a continuous conditional random field (CRF) learning problem. Therefore, we in this paper present a deep convolutional neural field model for estimating depths from a single image, aiming to jointly explore the capacity of deep CNN and continuous CRF. Specifically, we propose a deep structured learning scheme which learns the unary and pairwise potentials of continuous CRF in a unified deep CNN framework. The proposed method can be used for depth estimations of general scenes with no geometric priors nor any extra information injected. In our case, the integral of the partition function can be analytically calculated, thus we can exactly solve the log-likelihood optimization. Moreover, solving the MAP problem for predicting depths of a new image is highly efficient as closed-form solutions exist. We experimentally demonstrate that the proposed method outperforms state-of-the-art depth estimation methods on both indoor and outdoor scene datasets.

601 citations

Proceedings ArticleDOI
01 Jun 2019
TL;DR: Canet is presented, a class-agnostic segmentation network that performs few-shot segmentation on new classes with only a few annotated images available, and introduces an attention mechanism to effectively fuse information from multiple support examples under the setting of k-shot learning.
Abstract: Recent progress in semantic segmentation is driven by deep Convolutional Neural Networks and large-scale labeled image datasets. However, data labeling for pixel-wise segmentation is tedious and costly. Moreover, a trained model can only make predictions within a set of pre-defined classes. In this paper, we present CANet, a class-agnostic segmentation network that performs few-shot segmentation on new classes with only a few annotated images available. Our network consists of a two-branch dense comparison module which performs multi-level feature comparison between the support image and the query image, and an iterative optimization module which iteratively refines the predicted results. Furthermore, we introduce an attention mechanism to effectively fuse information from multiple support examples under the setting of k-shot learning. Experiments on PASCAL VOC 2012 show that our method achieves a mean Intersection-over-Union score of 55.4% for 1-shot segmentation and 57.1% for 5-shot segmentation, outperforming state-of-the-art methods by a large margin of 14.6% and 13.2%, respectively.

311 citations

Proceedings ArticleDOI
03 Nov 2019
TL;DR: This paper proposes to model structured segmentation data with graphs and apply attentive graph reasoning to propagate label information from support data to query data and proposes a pyramid-like structure that models different sizes of image regions as graph nodes and undertakes graph reasoning at different levels.
Abstract: One-shot image segmentation aims to undertake the segmentation task of a novel class with only one training image available. The difficulty lies in that image segmentation has structured data representations, which yields a many-to-many message passing problem. Previous methods often simplify it to a one-to-many problem by squeezing support data to a global descriptor. However, a mixed global representation drops the data structure and information of individual elements. In this paper, we propose to model structured segmentation data with graphs and apply attentive graph reasoning to propagate label information from support data to query data. The graph attention mechanism could establish the element-to-element correspondence across structured data by learning attention weights between connected graph nodes. To capture correspondence at different semantic levels, we further propose a pyramid-like structure that models different sizes of image regions as graph nodes and undertakes graph reasoning at different levels. Experiments on PASCAL VOC 2012 dataset demonstrate that our proposed network significantly outperforms the baseline method and leads to new state-of-the-art performance on 1-shot and 5-shot segmentation benchmarks.

239 citations


Cited by
More filters
Posted Content
TL;DR: It is shown that convolutional networks by themselves, trained end- to-end, pixels-to-pixels, improve on the previous best result in semantic segmentation.
Abstract: Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight is to build "fully convolutional" networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet, the VGG net, and GoogLeNet) into fully convolutional networks and transfer their learned representations by fine-tuning to the segmentation task. We then define a novel architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional network achieves state-of-the-art segmentation of PASCAL VOC (20% relative improvement to 62.2% mean IU on 2012), NYUDv2, and SIFT Flow, while inference takes one third of a second for a typical image.

9,803 citations

Book ChapterDOI
08 Oct 2016
TL;DR: In this paper, the authors combine the benefits of both approaches, and propose the use of perceptual loss functions for training feed-forward networks for image style transfer, where a feedforward network is trained to solve the optimization problem proposed by Gatys et al. in real-time.
Abstract: We consider image transformation problems, where an input image is transformed into an output image. Recent methods for such problems typically train feed-forward convolutional neural networks using a per-pixel loss between the output and ground-truth images. Parallel work has shown that high-quality images can be generated by defining and optimizing perceptual loss functions based on high-level features extracted from pretrained networks. We combine the benefits of both approaches, and propose the use of perceptual loss functions for training feed-forward networks for image transformation tasks. We show results on image style transfer, where a feed-forward network is trained to solve the optimization problem proposed by Gatys et al. in real-time. Compared to the optimization-based method, our network gives similar qualitative results but is three orders of magnitude faster. We also experiment with single-image super-resolution, where replacing a per-pixel loss with a perceptual loss gives visually pleasing results.

6,639 citations

Posted Content
TL;DR: This work considers image transformation problems, and proposes the use of perceptual loss functions for training feed-forward networks for image transformation tasks, and shows results on image style transfer, where aFeed-forward network is trained to solve the optimization problem proposed by Gatys et al. in real-time.
Abstract: We consider image transformation problems, where an input image is transformed into an output image. Recent methods for such problems typically train feed-forward convolutional neural networks using a \emph{per-pixel} loss between the output and ground-truth images. Parallel work has shown that high-quality images can be generated by defining and optimizing \emph{perceptual} loss functions based on high-level features extracted from pretrained networks. We combine the benefits of both approaches, and propose the use of perceptual loss functions for training feed-forward networks for image transformation tasks. We show results on image style transfer, where a feed-forward network is trained to solve the optimization problem proposed by Gatys et al in real-time. Compared to the optimization-based method, our network gives similar qualitative results but is three orders of magnitude faster. We also experiment with single-image super-resolution, where replacing a per-pixel loss with a perceptual loss gives visually pleasing results.

5,668 citations

Journal ArticleDOI
TL;DR: Fully convolutional networks (FCN) as mentioned in this paper were proposed to combine semantic information from a deep, coarse layer with appearance information from shallow, fine layer to produce accurate and detailed segmentations.
Abstract: Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, improve on the previous best result in semantic segmentation. Our key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet, the VGG net, and GoogLeNet) into fully convolutional networks and transfer their learned representations by fine-tuning to the segmentation task. We then define a skip architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional networks achieve improved segmentation of PASCAL VOC (30% relative improvement to 67.2% mean IU on 2012), NYUDv2, SIFT Flow, and PASCAL-Context, while inference takes one tenth of a second for a typical image.

4,960 citations