scispace - formally typeset
Search or ask a question
Author

Fazil Erdogan

Other affiliations: Oak Ridge National Laboratory
Bio: Fazil Erdogan is an academic researcher from Lehigh University. The author has contributed to research in topics: Stress intensity factor & Fracture mechanics. The author has an hindex of 64, co-authored 203 publications receiving 25202 citations. Previous affiliations of Fazil Erdogan include Oak Ridge National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a pair of Gauss-Chebyshev integration formulas for singular integrals are developed and a simple numerical method for solving a system of singular integral equations is described.
Abstract: In this paper a pair of Gauss-Chebyshev integration formulas for singular integrals are developed. Using these formulas a simple numerical method for solving a system of singular integral equations is described. To demonstrate the effectiveness of the method, a numerical example is given. In order to have a basis of comparison, the example problem is solved also by using an alternate method.

1,300 citations

Book ChapterDOI
01 Jan 1973
TL;DR: In this paper, the numerical methods for the solution of two groups of singular integral equations are described, which arise from the formulation of the mixed boundary value problems in applied physics and engineering.
Abstract: In this Chapter the numerical methods for the solution of two groups of singular integral equations will be described. These equations arise from the formulation of the mixed boundary value problems in applied physics and engineering. In particular, they play an important role in the solution of a great variety of contact and crack problems in solid mechanics. In the first group of integral equations the kernels have a simple Cauchy-type singularity.

796 citations

Journal ArticleDOI
TL;DR: In this article, the authors considered the plane elasticity problem for a nonhomogeneous medium containing a crack and derived the integral equation having the derivative of the crack surface displacement as the density function.
Abstract: The plane elasticity problem for a nonhomogeneous medium containing a crack is considered. It is assumed that the Poisson's ratio of the medium is constant and the Young's modulus E varies exponentially with the coordinate parallel to the crack. First the half plane problem is formulated and the solution is given for arbitrary tractions along the boundary. Then the integral equation for the crack problem is derived. It is shown that the integral equation having the derivative of the crack surface displacement as the density function has a simple Cauchy type kernel. Hence, its solution and the stresses around the crack tips have the conventional square root singularity. The solution is given for various loading conditions. The results show that the effect of the Poisson's ratio and consequently that of the thickness constraint on the stress intensity factors are rather negligible.

711 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this article, a displacement-based approximation is enriched near a crack by incorporating both discontinuous elds and the near tip asymptotic elds through a partition of unity method.
Abstract: SUMMARY An improvement of a new technique for modelling cracks in the nite element framework is presented. A standard displacement-based approximation is enriched near a crack by incorporating both discontinuous elds and the near tip asymptotic elds through a partition of unity method. A methodology that constructs the enriched approximation from the interaction of the crack geometry with the mesh is developed. This technique allows the entire crack to be represented independently of the mesh, and so remeshing is not necessary to model crack growth. Numerical experiments are provided to demonstrate the utility and robustness of the proposed technique. Copyright ? 1999 John Wiley & Sons, Ltd.

5,815 citations

Journal ArticleDOI
TL;DR: In this article, a minimal remeshing finite element method for crack growth is presented, where Discontinuous enrichment functions are added to the finite element approximation to account for the presence of the crack.
Abstract: A minimal remeshing finite element method for crack growth is presented. Discontinuous enrichment functions are added to the finite element approximation to account for the presence of the crack. This method allows the crack to be arbitrarily aligned within the mesh. For severely curved cracks, remeshing may be needed but only away from the crack tip where remeshing is much easier. Results are presented for a wide range of two-dimensional crack problems showing excellent accuracy. Copyright © 1999 John Wiley & Sons, Ltd.

4,185 citations

Book ChapterDOI
TL;DR: In this article, the authors describe the mixed mode cracking in layered materials and elaborates some of the basic results on the characterization of crack tip fields and on the specification of interface toughness, showing that cracks in brittle, isotropic, homogeneous materials propagate such that pure mode I conditions are maintained at the crack tip.
Abstract: Publisher Summary This chapter describes the mixed mode cracking in layered materials. There is ample experimental evidence that cracks in brittle, isotropic, homogeneous materials propagate such that pure mode I conditions are maintained at the crack tip. An unloaded crack subsequently subject to a combination of modes I and II will initiate growth by kinking in such a direction that the advancing tip is in mode I. The chapter also elaborates some of the basic results on the characterization of crack tip fields and on the specification of interface toughness. The competition between crack advance within the interface and kinking out of the interface depends on the relative toughness of the interface to that of the adjoining material. The interface stress intensity factors play precisely the same role as their counterparts in elastic fracture mechanics for homogeneous, isotropic solids. When an interface between a bimaterial system is actually a very thin layer of a third phase, the details of the cracking morphology in the thin interface layer can also play a role in determining the mixed mode toughness. The elasticity solutions for cracks in multilayers are also elaborated.

3,828 citations

Book
01 Jan 1971
TL;DR: A concise, self-contained introduction to solid polymers, the mechanics of their behavior and molecular and structural interpretations can be found in this article, which provides extended coverage of recent developments in rubber elasticity, relaxation transitions, non-linear viscoelastic behavior, anisotropic mechanical behavior, yield behavior of polymers and other fields.
Abstract: A concise, self-contained introduction to solid polymers, the mechanics of their behavior and molecular and structural interpretations. This updated edition provides extended coverage of recent developments in rubber elasticity, relaxation transitions, non-linear viscoelastic behavior, anisotropic mechanical behavior, yield behavior of polymers, breaking phenomena, and other fields.

2,335 citations