scispace - formally typeset
Search or ask a question
Author

Federico Herrera

Bio: Federico Herrera is an academic researcher from University of Lisbon. The author has contributed to research in topics: Melatonin & Huntingtin. The author has an hindex of 26, co-authored 50 publications receiving 3517 citations. Previous affiliations of Federico Herrera include University of Oviedo & Salk Institute for Biological Studies.


Papers
More filters
Journal ArticleDOI
TL;DR: This report reviews the studies which document the influence of melatonin on the activity and expression of the antioxidative enzymes glutathione peroxidase, superoxide dismutases and catalase both under physiological and under conditions of elevated oxidative stress and analyses the possible mechanisms by which melatonin regulates these enzymes.
Abstract: Antioxidant enzymes form the first line of defense against free radicals in organisms. Their regulation depends mainly on the oxidant status of the cell, given that oxidants are their principal modulators. However, other factors have been reported to increase antioxidant enzyme activity and/or gene expression. During the last decade, the antioxidant melatonin has been shown to possess genomic actions, regulating the expression of several genes. Melatonin also influences both antioxidant enzyme activity and cellular mRNA levels for these enzymes. In the present report, we review the studies which document the influence of melatonin on the activity and expression of the antioxidative enzymes glutathione peroxidase, superoxide dismutases and catalase both under physiological and under conditions of elevated oxidative stress. We also analyze the possible mechanisms by which melatonin regulates these enzymes.

1,824 citations

Journal ArticleDOI
TL;DR: Melatonin, at physiological serum concentrations, increases the mRNA of both superoxide dismutases (SODs) and glutathione peroxidase (GPx) in two neuronal cell lines and suggests that the regulation of AOE gene expression is likely to be receptor mediated.
Abstract: Antioxidant enzymes (AOEs) are part of the primary cellular defense against free radicals induced by toxins and/or spontaneously formed in cells. Melatonin (MLT) has received much attention in recent years due to its direct free radical scavenging and antioxidant properties. In the present work we report that MLT, at physiological serum concentrations (1 nM), increases the mRNA of both superoxide dismutases (SODs) and glutathione peroxidase (GPx) in two neuronal cell lines. The MLT effect on both SODs and GPx mRNA was mediated by a de novo synthesized protein. MLT alters mRNA stability for Cu-Zn SOD and GPx. Experiments with a short time treatment (pulse action) of MLT suggest that the regulation of AOE gene expression is likely to be receptor mediated, because 1-h treatment with MLT results in the same response as a 24-h treatment.

288 citations

Journal ArticleDOI
TL;DR: It is found that the antioxidant melatonin prevents cell death as well as the damage induced by chronic administration of MPTP measured as number of nigral cells, tyrosine hydroxylase levels, and several ultra-structural features.

153 citations

Journal ArticleDOI
TL;DR: It is found that millimolar concentrations of this indolamine reduced cell growth of C6 glioma cells by 70% after 72 hours of treatment, inhibiting cell progression from G(1) to S phase of the cell cycle.
Abstract: Melatonin is an indolamine mostly produced in the pineal gland, soluble in water, and highly lipophilic, which allows it to readily cross the blood-brain barrier. Melatonin possesses antioxidant properties and its long-term administration in rodents has not been found to cause noteworthy side effects. In the present work, we found that millimolar concentrations of this indolamine reduced cell growth of C6 glioma cells by 70% after 72 hours of treatment, inhibiting cell progression from G(1) to S phase of the cell cycle. Intraperitoneal administration of 15 mg/kg body weight of melatonin to rats previously injected in the flank with C6 glioma cells reduces tumor growth by 50% 2 weeks after the implant. Inhibition of cell growth does not depend on melatonin membrane receptor activation whereas it seemingly relates to the reduction of intracellular basal free radical levels by 30%. Increase of basal redox state of the cells and constitutive activation of tyrosine kinase receptor [receptor tyrosine kinase (RTK)] pathways, including the extracellular signal-regulated kinase 1/2 (ERK1/2) and the Akt and protein kinase C (PKC) signaling pathways, contribute to the progression of the gliomas leading to the constitutive activation of the redox-dependent survival transcription factor nuclear factor kappaB (NF-kappaB). The antioxidant effect of melatonin in C6 cells is associated to inhibition of NF-kappaB and Akt, but not of ERK1/2. The antiproliferative effect of the indolamine on these cells is partially abolished when coincubated with the PKC activator 12-O-tetradecanoylphorbol-13-acetate, thus indicating that the ability of melatonin to change cellular redox state may be inactivating the pathway RTK/PKC/Akt/NF-kappaB.

132 citations

Journal ArticleDOI
24 Oct 2011-PLOS ONE
TL;DR: The data suggest that tau enhances α-syn aggregation and toxicity and disruptsα-syn inclusion formation, which may amplify the deleterious process and spread the damage in neurodegenerative diseases that show co-occurrence of both pathologies.
Abstract: Background The simultaneous accumulation of different misfolded proteins in the central nervous system is a common feature in many neurodegenerative diseases. In most cases, co-occurrence of abnormal deposited proteins is observed in different brain regions and cell populations, but, in some instances, the proteins can be found in the same cellular aggregates. Co-occurrence of tau and α-synuclein (α-syn) aggregates has been described in neurodegenerative disorders with primary deposition of α-syn, such as Parkinson's disease and dementia with Lewy bodies. Although it is known that tau and α-syn have pathological synergistic effects on their mutual fibrillization, the underlying biological effects remain unclear. Methodology/Principal Findings We used different cell models of synucleinopathy to investigate the effects of tau on α-syn aggregation. Using confocal microscopy and FRET–based techniques we observed that tau colocalized and interacted with α-syn aggregates. We also found that tau overexpression changed the pattern of α-syn aggregation, reducing the size and increasing the number of aggregates. This shift was accompanied by an increase in the levels of insoluble α-syn. Furthermore, co-transfection of tau increased secreted α-syn and cytotoxicity. Conclusions/Significance Our data suggest that tau enhances α-syn aggregation and toxicity and disrupts α-syn inclusion formation. This pathological synergistic effect between tau and α-syn may amplify the deleterious process and spread the damage in neurodegenerative diseases that show co-occurrence of both pathologies.

114 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This report reviews the studies which document the influence of melatonin on the activity and expression of the antioxidative enzymes glutathione peroxidase, superoxide dismutases and catalase both under physiological and under conditions of elevated oxidative stress and analyses the possible mechanisms by which melatonin regulates these enzymes.
Abstract: Antioxidant enzymes form the first line of defense against free radicals in organisms. Their regulation depends mainly on the oxidant status of the cell, given that oxidants are their principal modulators. However, other factors have been reported to increase antioxidant enzyme activity and/or gene expression. During the last decade, the antioxidant melatonin has been shown to possess genomic actions, regulating the expression of several genes. Melatonin also influences both antioxidant enzyme activity and cellular mRNA levels for these enzymes. In the present report, we review the studies which document the influence of melatonin on the activity and expression of the antioxidative enzymes glutathione peroxidase, superoxide dismutases and catalase both under physiological and under conditions of elevated oxidative stress. We also analyze the possible mechanisms by which melatonin regulates these enzymes.

1,824 citations

Journal ArticleDOI
TL;DR: It is the current feeling of the authors that, in view of the widely diverse beneficial functions that have been reported for melatonin, these may be merely epiphenomena of the more fundamental, yet‐to‐be identified basic action(s) of this ancient molecule.
Abstract: Melatonin is uncommonly effective in reducing oxidative stress under a remarkably large number of circumstances. It achieves this action via a variety of means: direct detoxification of reactive oxygen and reactive nitrogen species and indirectly by stimulating antioxidant enzymes while suppressing the activity of pro-oxidant enzymes. In addition to these well-described actions, melatonin also reportedly chelates transition metals, which are involved in the Fenton/Haber-Weiss reactions; in doing so, melatonin reduces the formation of the devastatingly toxic hydroxyl radical resulting in the reduction of oxidative stress. Melatonin's ubiquitous but unequal intracellular distribution, including its high concentrations in mitochondria, likely aid in its capacity to resist oxidative stress and cellular apoptosis. There is credible evidence to suggest that melatonin should be classified as a mitochondria-targeted antioxidant. Melatonin's capacity to prevent oxidative damage and the associated physiological debilitation is well documented in numerous experimental ischemia/reperfusion (hypoxia/reoxygenation) studies especially in the brain (stroke) and in the heart (heart attack). Melatonin, via its antiradical mechanisms, also reduces the toxicity of noxious prescription drugs and of methamphetamine, a drug of abuse. Experimental findings also indicate that melatonin renders treatment-resistant cancers sensitive to various therapeutic agents and may be useful, due to its multiple antioxidant actions, in especially delaying and perhaps treating a variety of age-related diseases and dehumanizing conditions. Melatonin has been effectively used to combat oxidative stress, inflammation and cellular apoptosis and to restore tissue function in a number of human trials; its efficacy supports its more extensive use in a wider variety of human studies. The uncommonly high-safety profile of melatonin also bolsters this conclusion. It is the current feeling of the authors that, in view of the widely diverse beneficial functions that have been reported for melatonin, these may be merely epiphenomena of the more fundamental, yet-to-be identified basic action(s) of this ancient molecule.

1,045 citations

Journal ArticleDOI
TL;DR: Melatonin is principally secreted at night and is centrally involved in sleep regulation, as well as in a number of other cyclical bodily activities, and its sleep-facilitating properties have been found to be useful for treating insomnia symptoms in elderly and depressive patients.
Abstract: Melatonin is a ubiquitous molecule and widely distributed in nature, with functional activity occurring in unicellular organisms, plants, fungi and animals. In most vertebrates, including humans, melatonin is synthesized primarily in the pineal gland and is regulated by the environmental light/dark cycle via the suprachiasmatic nucleus. Pinealocytes function as 'neuroendocrine transducers' to secrete melatonin during the dark phase of the light/dark cycle and, consequently, melatonin is often called the 'hormone of darkness'. Melatonin is principally secreted at night and is centrally involved in sleep regulation, as well as in a number of other cyclical bodily activities. Melatonin is exclusively involved in signaling the 'time of day' and 'time of year' (hence considered to help both clock and calendar functions) to all tissues and is thus considered to be the body's chronological pacemaker or 'Zeitgeber'. Synthesis of melatonin also occurs in other areas of the body, including the retina, the gastrointestinal tract, skin, bone marrow and in lymphocytes, from which it may influence other physiological functions through paracrine signaling. Melatonin has also been extracted from the seeds and leaves of a number of plants and its concentration in some of this material is several orders of magnitude higher than its night-time plasma value in humans. Melatonin participates in diverse physiological functions. In addition to its timekeeping functions, melatonin is an effective antioxidant which scavenges free radicals and up-regulates several antioxidant enzymes. It also has a strong antiapoptotic signaling function, an effect which it exerts even during ischemia. Melatonin's cytoprotective properties have practical implications in the treatment of neurodegenerative diseases. Melatonin also has immune-enhancing and oncostatic properties. Its 'chronobiotic' properties have been shown to have value in treating various circadian rhythm sleep disorders, such as jet lag or shift-work sleep disorder. Melatonin acting as an 'internal sleep facilitator' promotes sleep, and melatonin's sleep-facilitating properties have been found to be useful for treating insomnia symptoms in elderly and depressive patients. A recently introduced melatonin analog, agomelatine, is also efficient for the treatment of major depressive disorder and bipolar affective disorder. Melatonin's role as a 'photoperiodic molecule' in seasonal reproduction has been established in photoperiodic species, although its regulatory influence in humans remains under investigation. Taken together, this evidence implicates melatonin in a broad range of effects with a significant regulatory influence over many of the body's physiological functions.

842 citations

Journal ArticleDOI
TL;DR: The photoinitiator Irgacure 2959 is well tolerated by many cell types over a range of mammalian species and cell photoencapsulation strategies may be optimized to improve cell survival by manipulating proliferation rate.

797 citations

Journal ArticleDOI
TL;DR: A deep understanding of the mechanisms involved in eliciting heavy metals toxicity is provided in order to highlight the necessity for development of strategies to decrease exposure to these metals, as well as to identify substances that contribute significantly to overcome their hazardous effects within the body of living organisms.
Abstract: Heavy metals, which have widespread environmental distribution and originate from natural and anthropogenic sources, are common environmental pollutants. In recent decades, their contamination has increased dramatically because of continuous discharge in sewage and untreated industrial effluents. Because they are non-degradable, they persist in the environment; accordingly, they have received a great deal of attention owing to their potential health and environmental risks. Although the toxic effects of metals depend on the forms and routes of exposure, interruptions of intracellular homeostasis include damage to lipids, proteins, enzymes and DNA via the production of free radicals. Following exposure to heavy metals, their metabolism and subsequent excretion from the body depends on the presence of antioxidants (glutathione, α-tocopherol, ascorbate, etc.) associated with the quenching of free radicals by suspending the activity of enzymes (catalase, peroxidase, and superoxide dismutase). Therefore, this review was written to provide a deep understanding of the mechanisms involved in eliciting their toxicity in order to highlight the necessity for development of strategies to decrease exposure to these metals, as well as to identify substances that contribute significantly to overcome their hazardous effects within the body of living organisms.

770 citations