scispace - formally typeset
Search or ask a question
Author

Federico Tombari

Bio: Federico Tombari is an academic researcher from Technische Universität München. The author has contributed to research in topics: Computer science & Pose. The author has an hindex of 48, co-authored 278 publications receiving 12522 citations. Previous affiliations of Federico Tombari include École Polytechnique Fédérale de Lausanne & Ludwig Maximilian University of Munich.


Papers
More filters
Proceedings ArticleDOI
01 Oct 2016
TL;DR: A fully convolutional architecture, encompassing residual learning, to model the ambiguous mapping between monocular images and depth maps is proposed and a novel way to efficiently learn feature map up-sampling within the network is presented.
Abstract: This paper addresses the problem of estimating the depth map of a scene given a single RGB image. We propose a fully convolutional architecture, encompassing residual learning, to model the ambiguous mapping between monocular images and depth maps. In order to improve the output resolution, we present a novel way to efficiently learn feature map up-sampling within the network. For optimization, we introduce the reverse Huber loss that is particularly suited for the task at hand and driven by the value distributions commonly present in depth maps. Our model is composed of a single architecture that is trained end-to-end and does not rely on post-processing techniques, such as CRFs or other additional refinement steps. As a result, it runs in real-time on images or videos. In the evaluation, we show that the proposed model contains fewer parameters and requires fewer training data than the current state of the art, while outperforming all approaches on depth estimation. Code and models are publicly available.

1,677 citations

Book ChapterDOI
05 Sep 2010
TL;DR: A novel comprehensive proposal for surface representation is formulated, which encompasses a new unique and repeatable local reference frame as well as a new 3D descriptor.
Abstract: This paper deals with local 3D descriptors for surface matching. First, we categorize existing methods into two classes: Signatures and Histograms. Then, by discussion and experiments alike, we point out the key issues of uniqueness and repeatability of the local reference frame. Based on these observations, we formulate a novel comprehensive proposal for surface representation, which encompasses a new unique and repeatable local reference frame as well as a new 3D descriptor. The latter lays at the intersection between Signatures and Histograms, so as to possibly achieve a better balance between descriptiveness and robustness. Experiments on publicly available datasets as well as on range scans obtained with Spacetime Stereo provide a thorough validation of our proposal.

1,479 citations

Proceedings ArticleDOI
01 Oct 2017
TL;DR: In this paper, a novel method for detecting 3D model instances and estimating their 6D pose from RGB data in a single shot is presented, which outperforms state-of-the-art methods that leverage RGBD data on multiple challenging datasets.
Abstract: We present a novel method for detecting 3D model instances and estimating their 6D poses from RGB data in a single shot. To this end, we extend the popular SSD paradigm to cover the full 6D pose space and train on synthetic model data only. Our approach competes or surpasses current state-of-the-art methods that leverage RGBD data on multiple challenging datasets. Furthermore, our method produces these results at around 10Hz, which is many times faster than the related methods. For the sake of reproducibility, we make our trained networks and detection code publicly available.

901 citations

Posted Content
TL;DR: In this article, a fully convolutional architecture, encompassing residual learning, is proposed to model the ambiguous mapping between monocular images and depth maps, which can be trained end-to-end and does not rely on post-processing techniques such as CRFs or other additional refinement steps.
Abstract: This paper addresses the problem of estimating the depth map of a scene given a single RGB image. We propose a fully convolutional architecture, encompassing residual learning, to model the ambiguous mapping between monocular images and depth maps. In order to improve the output resolution, we present a novel way to efficiently learn feature map up-sampling within the network. For optimization, we introduce the reverse Huber loss that is particularly suited for the task at hand and driven by the value distributions commonly present in depth maps. Our model is composed of a single architecture that is trained end-to-end and does not rely on post-processing techniques, such as CRFs or other additional refinement steps. As a result, it runs in real-time on images or videos. In the evaluation, we show that the proposed model contains fewer parameters and requires fewer training data than the current state of the art, while outperforming all approaches on depth estimation. Code and models are publicly available.

827 citations

Proceedings ArticleDOI
21 Jul 2017
TL;DR: A method where CNN-predicted dense depth maps are naturally fused together with depth measurements obtained from direct monocular SLAM, based on a scheme that privileges depth prediction in image locations where monocularSLAM approaches tend to fail, e.g. along low-textured regions, and vice-versa.
Abstract: Given the recent advances in depth prediction from Convolutional Neural Networks (CNNs), this paper investigates how predicted depth maps from a deep neural network can be deployed for the goal of accurate and dense monocular reconstruction. We propose a method where CNN-predicted dense depth maps are naturally fused together with depth measurements obtained from direct monocular SLAM, based on a scheme that privileges depth prediction in image locations where monocular SLAM approaches tend to fail, e.g. along low-textured regions, and vice-versa. We demonstrate the use of depth prediction to estimate the absolute scale of the reconstruction, hence overcoming one of the major limitations of monocular SLAM. Finally, we propose a framework to efficiently fuse semantic labels, obtained from a single frame, with dense SLAM, so to yield semantically coherent scene reconstruction from a single view. Evaluation results on two benchmark datasets show the robustness and accuracy of our approach.

630 citations


Cited by
More filters
Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations

Journal ArticleDOI
TL;DR: This work proposes a new neural network module suitable for CNN-based high-level tasks on point clouds, including classification and segmentation called EdgeConv, which acts on graphs dynamically computed in each layer of the network.
Abstract: Point clouds provide a flexible geometric representation suitable for countless applications in computer graphics; they also comprise the raw output of most 3D data acquisition devices. While hand-designed features on point clouds have long been proposed in graphics and vision, however, the recent overwhelming success of convolutional neural networks (CNNs) for image analysis suggests the value of adapting insight from CNN to the point cloud world. Point clouds inherently lack topological information, so designing a model to recover topology can enrich the representation power of point clouds. To this end, we propose a new neural network module dubbed EdgeConv suitable for CNN-based high-level tasks on point clouds, including classification and segmentation. EdgeConv acts on graphs dynamically computed in each layer of the network. It is differentiable and can be plugged into existing architectures. Compared to existing modules operating in extrinsic space or treating each point independently, EdgeConv has several appealing properties: It incorporates local neighborhood information; it can be stacked applied to learn global shape properties; and in multi-layer systems affinity in feature space captures semantic characteristics over potentially long distances in the original embedding. We show the performance of our model on standard benchmarks, including ModelNet40, ShapeNetPart, and S3DIS.

3,727 citations

01 Jan 2006

3,012 citations

Posted Content
TL;DR: This work introduces Bootstrap Your Own Latent (BYOL), a new approach to self-supervised image representation learning that performs on par or better than the current state of the art on both transfer and semi- supervised benchmarks.
Abstract: We introduce Bootstrap Your Own Latent (BYOL), a new approach to self-supervised image representation learning. BYOL relies on two neural networks, referred to as online and target networks, that interact and learn from each other. From an augmented view of an image, we train the online network to predict the target network representation of the same image under a different augmented view. At the same time, we update the target network with a slow-moving average of the online network. While state-of-the art methods rely on negative pairs, BYOL achieves a new state of the art without them. BYOL reaches $74.3\%$ top-1 classification accuracy on ImageNet using a linear evaluation with a ResNet-50 architecture and $79.6\%$ with a larger ResNet. We show that BYOL performs on par or better than the current state of the art on both transfer and semi-supervised benchmarks. Our implementation and pretrained models are given on GitHub.

2,942 citations