scispace - formally typeset
Search or ask a question
Author

Fei-Fei Li

Bio: Fei-Fei Li is an academic researcher from Stanford University. The author has contributed to research in topics: Graph (abstract data type) & WordNet. The author has an hindex of 3, co-authored 5 publications receiving 1746 citations.

Papers
More filters
Posted Content
TL;DR: The Visual Genome dataset is presented, which contains over 108K images where each image has an average of $$35$$35 objects, $$26$$26 attributes, and $$21$$21 pairwise relationships between objects, and represents the densest and largest dataset of image descriptions, objects, attributes, relationships, and question answer pairs.
Abstract: Despite progress in perceptual tasks such as image classification, computers still perform poorly on cognitive tasks such as image description and question answering. Cognition is core to tasks that involve not just recognizing, but reasoning about our visual world. However, models used to tackle the rich content in images for cognitive tasks are still being trained using the same datasets designed for perceptual tasks. To achieve success at cognitive tasks, models need to understand the interactions and relationships between objects in an image. When asked "What vehicle is the person riding?", computers will need to identify the objects in an image as well as the relationships riding(man, carriage) and pulling(horse, carriage) in order to answer correctly that "the person is riding a horse-drawn carriage". In this paper, we present the Visual Genome dataset to enable the modeling of such relationships. We collect dense annotations of objects, attributes, and relationships within each image to learn these models. Specifically, our dataset contains over 100K images where each image has an average of 21 objects, 18 attributes, and 18 pairwise relationships between objects. We canonicalize the objects, attributes, relationships, and noun phrases in region descriptions and questions answer pairs to WordNet synsets. Together, these annotations represent the densest and largest dataset of image descriptions, objects, attributes, relationships, and question answers.

1,663 citations

Posted Content
TL;DR: This model uses image metadata nonparametrically to generate neighborhoods of related images using Jaccard similarities, then uses a deep neural network to blend visual information from the image and its neighbors to improve multilabel image annotation.
Abstract: Some images that are difficult to recognize on their own may become more clear in the context of a neighborhood of related images with similar social-network metadata. We build on this intuition to improve multilabel image annotation. Our model uses image metadata nonparametrically to generate neighborhoods of related images using Jaccard similarities, then uses a deep neural network to blend visual information from the image and its neighbors. Prior work typically models image metadata parametrically, in contrast, our nonparametric treatment allows our model to perform well even when the vocabulary of metadata changes between training and testing. We perform comprehensive experiments on the NUS-WIDE dataset, where we show that our model outperforms state-of-the-art methods for multilabel image annotation even when our model is forced to generalize to new types of metadata.

57 citations

Proceedings ArticleDOI
01 Oct 2019
TL;DR: This work introduces the first scene graph prediction model that supports few-shot learning of predicates, enabling scene graph approaches to generalize to a set of new predicates.
Abstract: Scene graph prediction — classifying the set of objects and predicates in a visual scene — requires substantial training data. The long-tailed distribution of relationships can be an obstacle for such approaches, however, as they can only be trained on the small set of predicates that carry sufficient labels. We introduce the first scene graph prediction model that supports few-shot learning of predicates, enabling scene graph approaches to generalize to a set of new predicates. First, we introduce a new model of predicates as functions that operate on object features or image locations. Next, we define a scene graph model where these functions are trained as message passing protocols within a new graph convolution framework. We train the framework with a frequently occurring set of predicates and show that our approach outperforms those that use the same amount of supervision by 1.78 at recall@50 and performs on par with other scene graph models. Next, we extract object representations generated by the trained predicate functions to train few-shot predicate classifiers on rare predicates with as few as 1 labeled example. When compared to strong baselines like transfer learning from existing state-of-the-art representations, we show improved 5-shot performance by 4.16 recall@1. Finally, we show that our predicate functions generate interpretable visualizations, enabling the first interpretable scene graph model.

39 citations

Proceedings Article
03 May 2021
TL;DR: Adaptive Procedural Task Generation (APT-Gen) as discussed by the authors proposes to progressively generate a sequence of tasks as curricula to facilitate reinforcement learning in hard-exploration problems, where a task generator learns to create tasks from a parameterized task space via a black-box procedural generation module.
Abstract: We introduce Adaptive Procedural Task Generation (APT-Gen), an approach to progressively generate a sequence of tasks as curricula to facilitate reinforcement learning in hard-exploration problems. At the heart of our approach, a task generator learns to create tasks from a parameterized task space via a black-box procedural generation module. To enable curriculum learning in the absence of a direct indicator of learning progress, we propose to train the task generator by balancing the agent's performance in the generated tasks and the similarity to the target tasks. Through adversarial training, the task similarity is adaptively estimated by a task discriminator defined on the agent's experiences, allowing the generated tasks to approximate target tasks of unknown parameterization or outside of the predefined task space. Our experiments on grid world and robotic manipulation task domains show that APT-Gen achieves substantially better performance than various existing baselines by generating suitable tasks of rich variations.

2 citations

Proceedings ArticleDOI
11 Oct 2018
TL;DR: Engagement learning is introduced: a training approach that learns to trade off what the AI needs---the knowledge value of a label to the AI---against what people are interested to engage with---the engagement value of the label.
Abstract: Most artificial intelligence (AI) systems to date have focused entirely on performance, and rarely if at all on their social interactions with people and how to balance the AIs' goals against their human collaborators'. Learning quickly from interactions with people poses both social challenges and is unresolved technically. In this paper, we introduce engagement learning: a training approach that learns to trade off what the AI needs---the knowledge value of a label to the AI---against what people are interested to engage with---the engagement value of the label. We realize our goal with ELIA (Engagement Learning Interaction Agent), a conversational AI agent who's goal is to learn new facts about the visual world by asking engaging questions of people about the photos they upload to social media. Our current deployment of ELIA on Instagram receives a response rate of 26%.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Places Database is described, a repository of 10 million scene photographs, labeled with scene semantic categories, comprising a large and diverse list of the types of environments encountered in the world, using the state-of-the-art Convolutional Neural Networks as baselines, that significantly outperform the previous approaches.
Abstract: The rise of multi-million-item dataset initiatives has enabled data-hungry machine learning algorithms to reach near-human semantic classification performance at tasks such as visual object and scene recognition. Here we describe the Places Database, a repository of 10 million scene photographs, labeled with scene semantic categories, comprising a large and diverse list of the types of environments encountered in the world. Using the state-of-the-art Convolutional Neural Networks (CNNs), we provide scene classification CNNs (Places-CNNs) as baselines, that significantly outperform the previous approaches. Visualization of the CNNs trained on Places shows that object detectors emerge as an intermediate representation of scene classification. With its high-coverage and high-diversity of exemplars, the Places Database along with the Places-CNNs offer a novel resource to guide future progress on scene recognition problems.

3,215 citations

Posted Content
TL;DR: A combined bottom-up and top-down attention mechanism that enables attention to be calculated at the level of objects and other salient image regions is proposed, demonstrating the broad applicability of this approach to VQA.
Abstract: Top-down visual attention mechanisms have been used extensively in image captioning and visual question answering (VQA) to enable deeper image understanding through fine-grained analysis and even multiple steps of reasoning. In this work, we propose a combined bottom-up and top-down attention mechanism that enables attention to be calculated at the level of objects and other salient image regions. This is the natural basis for attention to be considered. Within our approach, the bottom-up mechanism (based on Faster R-CNN) proposes image regions, each with an associated feature vector, while the top-down mechanism determines feature weightings. Applying this approach to image captioning, our results on the MSCOCO test server establish a new state-of-the-art for the task, achieving CIDEr / SPICE / BLEU-4 scores of 117.9, 21.5 and 36.9, respectively. Demonstrating the broad applicability of the method, applying the same approach to VQA we obtain first place in the 2017 VQA Challenge.

2,248 citations

Proceedings ArticleDOI
21 Jul 2017
TL;DR: The ChestX-ray dataset as discussed by the authors contains 108,948 frontal-view X-ray images of 32,717 unique patients with the text-mined eight disease image labels from the associated radiological reports using natural language processing.
Abstract: The chest X-ray is one of the most commonly accessible radiological examinations for screening and diagnosis of many lung diseases. A tremendous number of X-ray imaging studies accompanied by radiological reports are accumulated and stored in many modern hospitals Picture Archiving and Communication Systems (PACS). On the other side, it is still an open question how this type of hospital-size knowledge database containing invaluable imaging informatics (i.e., loosely labeled) can be used to facilitate the data-hungry deep learning paradigms in building truly large-scale high precision computer-aided diagnosis (CAD) systems. In this paper, we present a new chest X-ray database, namely ChestX-ray8, which comprises 108,948 frontal-view X-ray images of 32,717 unique patients with the text-mined eight disease image labels (where each image can have multi-labels), from the associated radiological reports using natural language processing. Importantly, we demonstrate that these commonly occurring thoracic diseases can be detected and even spatially-located via a unified weakly-supervised multi-label image classification and disease localization framework, which is validated using our proposed dataset. Although the initial quantitative results are promising as reported, deep convolutional neural network based reading chest X-rays (i.e., recognizing and locating the common disease patterns trained with only image-level labels) remains a strenuous task for fully-automated high precision CAD systems.

2,100 citations

Journal ArticleDOI
TL;DR: A model that generates natural language descriptions of images and their regions based on a novel combination of Convolutional Neural Networks over image regions, bidirectional Recurrent Neural networks over sentences, and a structured objective that aligns the two modalities through a multimodal embedding is presented.
Abstract: We present a model that generates natural language descriptions of images and their regions. Our approach leverages datasets of images and their sentence descriptions to learn about the inter-modal correspondences between language and visual data. Our alignment model is based on a novel combination of Convolutional Neural Networks over image regions, bidirectional Recurrent Neural Networks (RNN) over sentences, and a structured objective that aligns the two modalities through a multimodal embedding. We then describe a Multimodal Recurrent Neural Network architecture that uses the inferred alignments to learn to generate novel descriptions of image regions. We demonstrate that our alignment model produces state of the art results in retrieval experiments on Flickr8K, Flickr30K and MSCOCO datasets. We then show that the generated descriptions outperform retrieval baselines on both full images and on a new dataset of region-level annotations. Finally, we conduct large-scale analysis of our RNN language model on the Visual Genome dataset of 4.1 million captions and highlight the differences between image and region-level caption statistics.

1,953 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of the recent achievements in this field brought about by deep learning techniques, covering many aspects of generic object detection: detection frameworks, object feature representation, object proposal generation, context modeling, training strategies, and evaluation metrics.
Abstract: Object detection, one of the most fundamental and challenging problems in computer vision, seeks to locate object instances from a large number of predefined categories in natural images. Deep learning techniques have emerged as a powerful strategy for learning feature representations directly from data and have led to remarkable breakthroughs in the field of generic object detection. Given this period of rapid evolution, the goal of this paper is to provide a comprehensive survey of the recent achievements in this field brought about by deep learning techniques. More than 300 research contributions are included in this survey, covering many aspects of generic object detection: detection frameworks, object feature representation, object proposal generation, context modeling, training strategies, and evaluation metrics. We finish the survey by identifying promising directions for future research.

1,897 citations