scispace - formally typeset
Search or ask a question
Author

Feifei Pan

Bio: Feifei Pan is an academic researcher from University of North Texas. The author has contributed to research in topics: Water content & Environmental science. The author has an hindex of 22, co-authored 58 publications receiving 1415 citations. Previous affiliations of Feifei Pan include Yale University & Chinese Academy of Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the USGS Load Estimator (LOADEST) was used to calculate June-August export from 1978 forward, coupled with a catchment-based land surface model to estimate total annual export from 1991 to 2001.
Abstract: [1] Export of nitrate and dissolved organic carbon (DOC) from the upper Kuparuk River between the late 1970s and early 2000s was evaluated using long-term ecological research (LTER) data in combination with solute flux and catchment hydrology models. The USGS Load Estimator (LOADEST) was used to calculate June–August export from 1978 forward. LOADEST was then coupled with a catchment-based land surface model (CLSM) to estimate total annual export from 1991 to 2001. Simulations using the LOADEST/CLSM combination indicate that annual nitrate export from the upper Kuparuk River increased by � 5 fold and annual DOC export decreased by about one half from 1991 to 2001. The decrease in DOC export was focused in May and was primarily attributed to a decrease in river discharge. In contrast, increased nitrate export was evident from May to September and was primarily attributed to increased nitrate concentrations. Increased nitrate concentrations are evident across a wide range of discharge conditions, indicating that higher values do not simply reflect lower discharge in recent years but a significant shift to higher concentration per unit discharge. Nitrate concentrations remained elevated after 2001. However, extraordinarily low discharge during June 2004 and June–August 2005 outweighed the influence of higher concentrations in determining export during these years. The mechanism responsible for the recent increase in nitrate concentrations is uncertain but may relate to changes in soils and vegetation associated with regional warming. While changes in nitrate and DOC export from arctic rivers reflect changes in terrestrial ecosystems, they also have significant implications for Arctic Ocean ecosystems.

118 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the nature of terrain-induced gap winds and wakes in the atmosphere using surface wind data from synthetic aperture radar (SAR) and the shallow water equations.
Abstract: The nature of terrain-induced gap winds and wakes in the atmosphere is examined using surface wind data from synthetic aperture radar (SAR) and the shallow water equations. The shallow water model is used to predict the types of wake‐jet wind patterns that might occur behind an idealized pair of bell-shaped hills with a gap between them. A regime diagram is constructed based on the width of the gap and the upstream Froude number. Specific predictions of the model are found to compare moderately well with SAR data from four examples of airflow near Unimak Island in the Aleutian Chain. The model predicts the observed wakes and jets, including jets that exceed the upstream speed. Theoretical analysis considers the relative importance of rising terrain and narrowing valley walls in the acceleration of gap winds. Wind speeds in the wake region are controlled by the Bernoulli function and regional pressure. Gap winds therefore are streams of air that have avoided Bernoulli loss over the terrain by passing through gaps. The speed of gap winds can exceed the upstream speed only in ridgelike situations when the regional leeside pressure is lower than the upstream pressure.

98 citations

Journal ArticleDOI
TL;DR: The potential importance of river inputs for biological production in coastal waters of the Alaskan Beaufort Sea is discussed in this paper. But, the potential role of river-supplied nitrogen in support of primary production depends strongly on remineralization mechanisms.
Abstract: While river-borne materials are recognized as important resources supporting coastal ecosystems around the world, estimates of river export from the North Slope of Alaska have been limited by a scarcity of water chemistry and river discharge data. This paper quantifies water, nutrient, and organic matter export from the three largest rivers (Sagavanirktok, Kuparuk, and Colville) that drain Alaska's North Slope and discusses the potential importance of river inputs for biological production in coastal waters of the Alaskan Beaufort Sea. Together these rivers export ∼297,000 metric tons of organic carbon and ∼18,000 metric tons of organic nitrogen each year. Annual fluxes of nitrate-N, ammonium-N, and soluble reactive phosphorus are approximately 1750, 200, and 140 metric tons per year, respectively. Constituent export from Alaska's North Slope is dominated by the Colville River. This is in part due to its larger size, but also because constituent yields are greater in the Colville watershed. River-supplied nitrogen may be more important to productivity along the Alaskan Beaufort Sea coast than previously thought. However, given the dominance of organic nitrogen export, the potential role of river-supplied nitrogen in support of primary production depends strongly on remineralization mechanisms. Although rivers draining the North Slope of Alaska make only a small contribution to overall river export from the pan-arctic watershed, comparisons with major arctic rivers reveal unique regional characteristics as well as remarkable similarities among different regions and scales. Such information is crucial for development of robust river export models that represent the arctic system as a whole.

95 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explored the potential of estimating vegetation structural parameters such as vegetation height and leaf area index (LAI) for short wetland vegetation using airborne discrete-return LiDAR data.

89 citations

Journal ArticleDOI
TL;DR: In this article, a simple analytical method for estimating surface soil moisture directly from rainfall data is proposed and studied, where a diagnostic equation is derived from the soil moisture dynamics equation by eliminating the diffusion term and derived daily soil moisture function is a time-weighted average of previous cumulative rainfall over a given period.
Abstract: A simple analytical method for estimating surface soil moisture directly from rainfall data is proposed and studied. Soil moisture dynamics are represented by a linear stochastic partial differential equation ( Entekhabi and Rodriguez-Iturbe, 1994 ). A diagnostic equation is derived from the soil moisture dynamics equation by eliminating the diffusion term. The derived daily soil moisture function is a time-weighted average of previous cumulative rainfall over a given period (e.g., >14 days). The advantage of this method is that information on the initial condition of soil moisture, which is often not available at all times and locations, is not needed. The loss coefficient in the diagnostic equation for soil moisture can be estimated from land surface characteristics and soil properties. The method for determining the averaging window size, the loss coefficient, and the infiltration coefficient are described and demonstrated. The soil moisture data observed during three field experiments, i.e., Monsoon'90, Washita'92, and SGP'97, are compared to the calculated soil moisture. The results indicate that the proposed method is robust and has the potential for useful soil moisture predictions.

87 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors compared a number of calculation methods for TWI and evaluated them in terms of their correlation with the following measured variables: vascular plant species richness, soil pH, groundwater level, soil moisture, and a constructed wetness degree.
Abstract: . The topographic wetness index (TWI, ln(a/tanβ)), which combines local upslope contributing area and slope, is commonly used to quantify topographic control on hydrological processes. Methods of computing this index differ primarily in the way the upslope contributing area is calculated. In this study we compared a number of calculation methods for TWI and evaluated them in terms of their correlation with the following measured variables: vascular plant species richness, soil pH, groundwater level, soil moisture, and a constructed wetness degree. The TWI was calculated by varying six parameters affecting the distribution of accumulated area among downslope cells and by varying the way the slope was calculated. All possible combinations of these parameters were calculated for two separate boreal forest sites in northern Sweden. We did not find a calculation method that performed best for all measured variables; rather the best methods seemed to be variable and site specific. However, we were able to identify some general characteristics of the best methods for different groups of measured variables. The results provide guiding principles for choosing the best method for estimating species richness, soil pH, groundwater level, and soil moisture by the TWI derived from digital elevation models.

741 citations

Journal ArticleDOI
TL;DR: A review of recent studies investigating linkages between permafrost dynamics and river biogeochemistry in the Arctic is presented in this article, including consideration of likely impacts that warming-induced changes in permfrost may be having (or will have in the future) on the delivery of organic matter, inorganic nutrients, and major ions to the Arctic Ocean.
Abstract: Over the next century, near-surface permafrost across the circumpolar Arctic is expected to degrade significantly, particularly for land areas south of 70°N. This is likely to cause widespread impacts on arctic hydrology, ecology, and trace gas emissions. Here, we present a review of recent studies investigating linkages between permafrost dynamics and river biogeochemistry in the Arctic, including consideration of likely impacts that warming-induced changes in permafrost may be having (or will have in the future) on the delivery of organic matter, inorganic nutrients, and major ions to the Arctic Ocean. These interacting processes can be highly complex and undoubtedly exhibit spatial and temporal variabilities associated with current permafrost conditions, sensitivity to permafrost thaw, mode of permafrost degradation (overall permafrost thaw, active layer deepening, and/or thermokarst processes), and environmental characteristics of watersheds (e.g. land cover, soil type, and topography). One of the most profound consequences of permafrost thaw projected for the future is that the arctic terrestrial freshwater system is likely to experience a transition from a surface water-dominated system to a groundwater-dominated system. Along with many other cascading impacts from this transition, mineral-rich groundwater may become an important contributor to streamflow, in addition to the currently dominant contribution from mineral-poor surface water. Most studies observe or predict an increase in major ion, phosphate, and silicate export with this shift towards greater groundwater contributions. However, we see conflicting accounts of whether the delivery of inorganic nitrogen and organic matter will increase or decrease with warming and permafrost thaw. It is important to note that uncertainties in the predictions of the total flux of biogeochemical constituents are tightly linked to future uncertainties in discharge of rivers. Nonetheless, it is clear that over the next century there will be important shifts in the river transport of organic matter, inorganic nutrients, and major ions, which may in turn have critical implications for primary production and carbon cycling on arctic shelves and in the Arctic Ocean basin interior. Copyright © 2008 John Wiley & Sons, Ltd.

605 citations

Journal ArticleDOI
TL;DR: The geostatistical properties of soil moisture patterns from five different sites in Australia (Tarrawarra and Point Nepean) and New Zealand (three sites from the Mahurangi River Basin) are analysed in this paper.

560 citations

01 Feb 2004
TL;DR: In this paper, the authors used intact core incubations sampled periodically through the winter and following growing season to measure net N mineralization and nitrification in dry heath and in moist tussock tundra under ambient and experimentally increased snow depths.
Abstract: Microbial activity in Arctic tundra ecosystems continues through the winter and is an important component of the annual C budget. This activity is sensitive to climatic variation, particularly snow depth because that regulates soil temperature. The influence of winter conditions on soil N cycling is poorly understood. In this study, we used intact core incubations sampled periodically through the winter and following growing season to measure net N mineralization and nitrification in dry heath and in moist tussock tundra under ambient and experimentally increased snow depths (by use of a snowfence). In dry heath, we sampled soils under Dryas octopetela or Arctostaphylos alpine, while in tussock tundra, we sampled Eriophorum vaginatum tussocks and Sphagnum dominated areas between tussocks. Our objectives were to: (1) examine how different winter snow regimes influenced year-round N dynamics in the two tundra types, and (2) evaluate how these responses are affected by dominant species present in each system. In tussock tundra, soils with increased winter snow cover had high net N mineralization rates during the fall and winter, followed by immobilization during thaw. In contrast, N mineralization only occurred during the autumn in soils with ambient snow cover. During the growing season when N immobilization dominated in areas with ambient snow cover, soils with increased winter snow cover had positive net mineralization and nitrification rates. In dry heath tundra, soils with increased snow depth had high late winter net N mineralization rates, but these rates were: (a) comparable to early winter rates in soils under Arctostaphylos plants with ambient snow cover; (b) greater in soils under Arctostaphylos plants than in soils under Dryas plants; and (c) less than the rates found in tussock tundra. Our findings suggest under ambient snow conditions, low soil temperatures limit soil N mineralization, but that deeper snow conditions with the associated warmer winter soil temperatures dramatically increase over-winter N mineralization and thereby alter the amount and timing of plant-available N in tundra ecosystems. (C) 2003 Elsevier Ltd. All rights reserved.

547 citations

Journal ArticleDOI
TL;DR: In this article, seasonal and annual constituent fluxes have been determined using consistent sampling and analytical methods at the pan-Arctic scale and consequently provide the best available estimates for constituent flux from land to the Arctic Ocean and surrounding seas.
Abstract: River inputs of nutrients and organic matter impact the biogeochemistry of arctic estuaries and the Arctic Ocean as a whole, yet there is considerable uncertainty about the magnitude of fluvial fluxes at the pan-Arctic scale. Samples from the six largest arctic rivers, with a combined watershed area of 11.3 × 106 km2, have revealed strong seasonal variations in constituent concentrations and fluxes within rivers as well as large differences among the rivers. Specifically, we investigate fluxes of dissolved organic carbon, dissolved organic nitrogen, total dissolved phosphorus, dissolved inorganic nitrogen, nitrate, and silica. This is the first time that seasonal and annual constituent fluxes have been determined using consistent sampling and analytical methods at the pan-Arctic scale and consequently provide the best available estimates for constituent flux from land to the Arctic Ocean and surrounding seas. Given the large inputs of river water to the relatively small Arctic Ocean and the dramatic impacts that climate change is having in the Arctic, it is particularly urgent that we establish the contemporary river fluxes so that we will be able to detect future changes and evaluate the impact of the changes on the biogeochemistry of the receiving coastal and ocean systems.

543 citations