scispace - formally typeset
Search or ask a question
Author

Felicia W. Pagliuca

Bio: Felicia W. Pagliuca is an academic researcher from Harvard University. The author has contributed to research in topics: Stem cell & Induced pluripotent stem cell. The author has an hindex of 11, co-authored 14 publications receiving 2751 citations.

Papers
More filters
Journal ArticleDOI
09 Oct 2014-Cell
TL;DR: A scalable differentiation protocol is reported that can generate hundreds of millions of glucose-responsive β cells from hPSC in vitro that secrete human insulin into the serum of mice shortly after transplantation in a glucose-regulated manner, and transplantation of these cells ameliorates hyperglycemia in diabetic mice.

1,596 citations

Journal ArticleDOI
TL;DR: The first long-term glycemic correction of a diabetic, immunocompetent animal model using human SC-β cells is reported, which induced glycemic Correction without any immunosuppression until their removal at 174 d after implantation.
Abstract: When encapsulated with alginate derivatives that resist the foreign-body response, human embryonic stem cell–derived beta cells restore long-term normoglycemia in immunocompetent mice without the need for immunosuppression.

546 citations

Journal ArticleDOI
01 May 2019-Nature
TL;DR: A perspective on human stem-cell differentiation is provided, and will guide future endeavours that focus on the differentiation of pancreatic islet cells, and their applications in regenerative medicine.
Abstract: In vitro differentiation of human stem cells can produce pancreatic β-cells; the loss of this insulin-secreting cell type underlies type 1 diabetes. Here, as a step towards understanding this differentiation process, we report the transcriptional profiling of more than 100,000 human cells undergoing in vitro β-cell differentiation, and describe the cells that emerged. We resolve populations that correspond to β-cells, α-like poly-hormonal cells, non-endocrine cells that resemble pancreatic exocrine cells and a previously unreported population that resembles enterochromaffin cells. We show that endocrine cells maintain their identity in culture in the absence of exogenous growth factors, and that changes in gene expression associated with in vivo β-cell maturation are recapitulated in vitro. We implement a scalable re-aggregation technique to deplete non-endocrine cells and identify CD49a (also known as ITGA1) as a surface marker of the β-cell population, which allows magnetic sorting to a purity of 80%. Finally, we use a high-resolution sequencing time course to characterize gene-expression dynamics during the induction of human pancreatic endocrine cells, from which we develop a lineage model of in vitro β-cell differentiation. This study provides a perspective on human stem-cell differentiation, and will guide future endeavours that focus on the differentiation of pancreatic islet cells, and their applications in regenerative medicine. Single-cell transcriptional profiling of in vitro human pancreatic β-cell differentiation reveals progenitor and terminal fates, produces a detailed time course of endocrine induction and underpins a lineage model.

313 citations

Journal ArticleDOI
TL;DR: The results show that T1D SC-β cells could potentially be used for the treatment of diabetes, drug screening and the study of β-cell biology.
Abstract: We recently reported the scalable in vitro production of functional stem cell-derived β-cells (SC-β cells). Here we extend this approach to generate the first SC-β cells from type 1 diabetic patients (T1D). β-cells are destroyed during T1D disease progression, making it difficult to extensively study them in the past. These T1D SC-β cells express β-cell markers, respond to glucose both in vitro and in vivo, prevent alloxan-induced diabetes in mice and respond to anti-diabetic drugs. Furthermore, we use an in vitro disease model to demonstrate the cells respond to different forms of β-cell stress. Using these assays, we find no major differences in T1D SC-β cells compared with SC-β cells derived from non-diabetic patients. These results show that T1D SC-β cells could potentially be used for the treatment of diabetes, drug screening and the study of β-cell biology.

307 citations

Journal ArticleDOI
TL;DR: A new method is employed to isolate and profile insulin-expressing cells and it is concluded that several different hPSC lines generate very similar insulin- expressing cells, cells whose transcripts resemble fetal rather than adult β cells.
Abstract: Human pluripotent stem cells (hPSCs) have the potential to generate any human cell type, and one widely recognized goal is to make pancreatic β cells. To this end, comparisons between differentiated cell types produced in vitro and their in vivo counterparts are essential to validate hPSC-derived cells. Genome-wide transcriptional analysis of sorted insulin-expressing (INS+) cells derived from three independent hPSC lines, human fetal pancreata, and adult human islets points to two major conclusions: (i) Different hPSC lines produce highly similar INS+ cells and (ii) hPSC-derived INS+ (hPSC-INS+) cells more closely resemble human fetal β cells than adult β cells. This study provides a direct comparison of transcriptional programs between pure hPSC-INS+ cells and true β cells and provides a catalog of genes whose manipulation may convert hPSC-INS+ cells into functional β cells.

275 citations


Cited by
More filters
Journal ArticleDOI
24 Dec 2004-Science

1,949 citations

Journal ArticleDOI
23 Jul 2015
TL;DR: The greatest need is for agents that enhance insulin sensitivity, halt the progressive pancreatic β-cell failure that is characteristic of T2DM and prevent or reverse the microvascular complications.
Abstract: Type 2 diabetes mellitus (T2DM) is an expanding global health problem, closely linked to the epidemic of obesity. Individuals with T2DM are at high risk for both microvascular complications (including retinopathy, nephropathy and neuropathy) and macrovascular complications (such as cardiovascular comorbidities), owing to hyperglycaemia and individual components of the insulin resistance (metabolic) syndrome. Environmental factors (for example, obesity, an unhealthy diet and physical inactivity) and genetic factors contribute to the multiple pathophysiological disturbances that are responsible for impaired glucose homeostasis in T2DM. Insulin resistance and impaired insulin secretion remain the core defects in T2DM, but at least six other pathophysiological abnormalities contribute to the dysregulation of glucose metabolism. The multiple pathogenetic disturbances present in T2DM dictate that multiple antidiabetic agents, used in combination, will be required to maintain normoglycaemia. The treatment must not only be effective and safe but also improve the quality of life. Several novel medications are in development, but the greatest need is for agents that enhance insulin sensitivity, halt the progressive pancreatic β-cell failure that is characteristic of T2DM and prevent or reverse the microvascular complications. For an illustrated summary of this Primer, visit: http://go.nature.com/V2eGfN.

1,757 citations

Journal ArticleDOI
09 Oct 2014-Cell
TL;DR: A scalable differentiation protocol is reported that can generate hundreds of millions of glucose-responsive β cells from hPSC in vitro that secrete human insulin into the serum of mice shortly after transplantation in a glucose-regulated manner, and transplantation of these cells ameliorates hyperglycemia in diabetic mice.

1,596 citations

Journal ArticleDOI
TL;DR: A droplet-based, single-cell RNA-seq method is implemented to determine the transcriptomes of over 12,000 individual pancreatic cells from four human donors and two mouse strains and provides a resource for the discovery of novel cell type-specific transcription factors, signaling receptors, and medically relevant genes.
Abstract: Although the function of the mammalian pancreas hinges on complex interactions of distinct cell types, gene expression profiles have primarily been described with bulk mixtures. Here we implemented a droplet-based, single-cell RNA-seq method to determine the transcriptomes of over 12,000 individual pancreatic cells from four human donors and two mouse strains. Cells could be divided into 15 clusters that matched previously characterized cell types: all endocrine cell types, including rare epsilon-cells; exocrine cell types; vascular cells; Schwann cells; quiescent and activated stellate cells; and four types of immune cells. We detected subpopulations of ductal cells with distinct expression profiles and validated their existence with immuno-histochemistry stains. Moreover, among human beta- cells, we detected heterogeneity in the regulation of genes relating to functional maturation and levels of ER stress. Finally, we deconvolved bulk gene expression samples using the single-cell data to detect disease-associated differential expression. Our dataset provides a resource for the discovery of novel cell type-specific transcription factors, signaling receptors, and medically relevant genes.

1,046 citations

Journal ArticleDOI
24 Mar 2015-eLife
TL;DR: It is shown that HLOs are remarkably similar to human fetal lung based on global transcriptional profiles, suggesting that HL Os are an excellent model to study human lung development, maturation and disease.
Abstract: Cell behavior has traditionally been studied in the lab in two-dimensional situations, where cells are grown in thin layers on cell-culture dishes. However, most cells in the body exist in a three-dimensional environment as part of complex tissues and organs, and so researchers have been attempting to re-create these environments in the lab. To date, several such ‘organoids’ have been successfully generated, including models of the human intestine, stomach, brain and liver. These organoids can mimic the responses of real tissues and can be used to investigate how organs form, change with disease, and how they might respond to potential therapies. Here, Dye et al. developed a new three-dimensional model of the human lung by coaxing human stem cells to become specific types of cells that then formed complex tissues in a petri dish. To make these lung organoids, Dye et al. manipulated several of the signaling pathways that control the formation of organs during the development of animal embryos. First, the stem cells were instructed to form a type of tissue called endoderm, which is found in early embryos and gives rise to the lung, liver and other several other internal organs. Then, Dye et al. activated two important developmental pathways that are known to make endoderm form three-dimensional intestinal tissue. However, by inhibiting two other key developmental pathways at the same time, the endoderm became tissue that resembles the early lung found in embryos instead. This early lung-like tissue formed three-dimensional spherical structures as it developed. The next challenge was to make these structures develop into lung tissue. Dye et al. worked out a method to do this, which involved exposing the cells to additional proteins that are involved in lung development. The resulting lung organoids survived in laboratory cultures for over 100 days and developed into well-organized structures that contain many of the types of cells found in the lung. Further analysis revealed the gene activity in the lung organoids resembles that of the lung of a developing human fetus, suggesting that lung organoids grown in the dish are not fully mature. Dye et al.'s findings provide a new approach for creating human lung organoids in culture that may open up new avenues for investigating lung development and diseases.

619 citations