scispace - formally typeset
Search or ask a question
Author

Felipe D. Arredondo

Other affiliations: Virginia Tech
Bio: Felipe D. Arredondo is an academic researcher from Oregon State University. The author has contributed to research in topics: Phytophthora sojae & Oomycete. The author has an hindex of 11, co-authored 15 publications receiving 2421 citations. Previous affiliations of Felipe D. Arredondo include Virginia Tech.

Papers
More filters
Journal ArticleDOI
01 Sep 2006-Science
TL;DR: Comparison of the two species' genomes reveals a rapid expansion and diversification of many protein families associated with plant infection such as hydrolases, ABC transporters, protein toxins, proteinase inhibitors, and, in particular, a superfamily of 700 proteins with similarity to known oömycete avirulence genes.
Abstract: Draft genome sequences have been determined for the soybean pathogen Phytophthora sojae and the sudden oak death pathogen Phytophthora ramorum. Oomycetes such as these Phytophthora species share the kingdom Stramenopila with photosynthetic algae such as diatoms, and the presence of many Phytophthora genes of probable phototroph origin supports a photosynthetic ancestry for the stramenopiles. Comparison of the two species' genomes reveals a rapid expansion and diversification of many protein families associated with plant infection such as hydrolases, ABC transporters, protein toxins, proteinase inhibitors, and, in particular, a superfamily of 700 proteins with similarity to known oomycete avirulence genes.

1,016 citations

Journal ArticleDOI
TL;DR: It is shown that a pair of sequence motifs, RXLR and dEER, plus surrounding sequences, are both necessary and sufficient to deliver the protein into plant cells and indicates that the >370 RXLR-dEER–containing proteins encoded in the genome sequence of P. sojae are candidate effectors.
Abstract: Effector proteins secreted by oomycete and fungal pathogens have been inferred to enter host cells, where they interact with host resistance gene products. Using the effector protein Avr1b of Phytophthora sojae, an oomycete pathogen of soybean (Glycine max), we show that a pair of sequence motifs, RXLR and dEER, plus surrounding sequences, are both necessary and sufficient to deliver the protein into plant cells. Particle bombardment experiments demonstrate that these motifs function in the absence of the pathogen, indicating that no additional pathogen-encoded machinery is required for effector protein entry into host cells. Furthermore, fusion of the Avr1b RXLR-dEER domain to green fluorescent protein (GFP) allows GFP to enter soybean root cells autonomously. The conclusion that RXLR and dEER serve to transduce oomycete effectors into host cells indicates that the >370 RXLR-dEER-containing proteins encoded in the genome sequence of P. sojae are candidate effectors. We further show that the RXLR and dEER motifs can be replaced by the closely related erythrocyte targeting signals found in effector proteins of Plasmodium, the protozoan that causes malaria in humans. Mutational analysis of the RXLR motif shows that the required residues are very similar in the motifs of Plasmodium and Phytophthora. Thus, the machinery of the hosts (soybean and human) targeted by the effectors may be very ancient.

401 citations

Journal ArticleDOI
23 Jul 2010-Cell
TL;DR: It is shown that effectors of another pathogen type, fungi, contain functional variants of the RXLR motif, and that the oomycete and fungal RX LR motifs enable binding to the phospholipid, phosphatidylinositol-3-phosphate (PI3P).

393 citations

Journal ArticleDOI
TL;DR: This work shows that the Phytophthora sojae effector protein Avr1b can contribute positively to virulence and can suppress programmed cell death triggered by the mouse BAX protein in yeast, soybean, and Nicotiana benthamiana cells, and supports the hypothesis that these motifs are critical for the functions of the very large number of predicted oomycete effectors that contain them.
Abstract: The sequenced genomes of oomycete plant pathogens contain large superfamilies of effector proteins containing the protein translocation motif RXLR-dEER. However, the contributions of these effectors to pathogenicity remain poorly understood. Here, we show that the Phytophthora sojae effector protein Avr1b can contribute positively to virulence and can suppress programmed cell death (PCD) triggered by the mouse BAX protein in yeast, soybean (Glycine max), and Nicotiana benthamiana cells. We identify three conserved motifs (K, W, and Y) in the C terminus of the Avr1b protein and show that mutations in the conserved residues of the W and Y motifs reduce or abolish the ability of Avr1b to suppress PCD and also abolish the avirulence interaction of Avr1b with the Rps1b resistance gene in soybean. W and Y motifs are present in at least half of the identified oomycete RXLR-dEER effector candidates, and we show that three of these candidates also suppress PCD in soybean. Together, these results indicate that the W and Y motifs are critical for the interaction of Avr1b with host plant target proteins and support the hypothesis that these motifs are critical for the functions of the very large number of predicted oomycete effectors that contain them.

300 citations

Journal ArticleDOI
03 Apr 2009-PLOS ONE
TL;DR: The Phytophthora sojae avirulence genes Avr1a and Avr3a are identified and it is demonstrated how each of these Avr genes display copy number variation in different strains of P.Sojae.
Abstract: The importance of segmental duplications and copy number variants as a source of genetic and phenotypic variation is gaining greater appreciation, in a variety of organisms. Now, we have identified the Phytophthora sojae avirulence genes Avr1a and Avr3a and demonstrate how each of these Avr genes display copy number variation in different strains of P. sojae. The Avr1a locus is a tandem array of four near-identical copies of a 5.2 kb DNA segment. Two copies encoding Avr1a are deleted in some P. sojae strains, causing changes in virulence. In other P. sojae strains, differences in transcription of Avr1a result in gain of virulence. For Avr3a, there are four copies or one copy of this gene, depending on the P. sojae strain. In P. sojae strains with multiple copies of Avr3a, this gene occurs within a 10.8 kb segmental duplication that includes four other genes. Transcriptional differences of the Avr3a gene among P. sojae strains cause changes in virulence. To determine the extent of duplication within the superfamily of secreted proteins that includes Avr1a and Avr3a, predicted RXLR effector genes from the P. sojae and the P. ramorum genomes were compared by counting trace file matches from whole genome shotgun sequences. The results indicate that multiple, near-identical copies of RXLR effector genes are prevalent in oomycete genomes. We propose that multiple copies of particular RXLR effectors may contribute to pathogen fitness. However, recognition of these effectors by plant immune systems results in selection for pathogen strains with deleted or transcriptionally silenced gene copies.

151 citations


Cited by
More filters
Journal ArticleDOI
13 Nov 2008-Nature
TL;DR: Analysis of molecular divergence compared with yeasts and metazoans reveals rapid rates of gene diversification in diatoms, and documents the presence of hundreds of genes from bacteria, likely to provide novel possibilities for metabolite management and for perception of environmental signals.
Abstract: Diatoms are photosynthetic secondary endosymbionts found throughout marine and freshwater environments, and are believed to be responsible for around one- fifth of the primary productivity on Earth(1,2). The genome sequence of the marine centric diatom Thalassiosira pseudonana was recently reported, revealing a wealth of information about diatom biology(3-5). Here we report the complete genome sequence of the pennate diatom Phaeodactylum tricornutum and compare it with that of T. pseudonana to clarify evolutionary origins, functional significance and ubiquity of these features throughout diatoms. In spite of the fact that the pennate and centric lineages have only been diverging for 90 million years, their genome structures are dramatically different and a substantial fraction of genes (similar to 40%) are not shared by these representatives of the two lineages. Analysis of molecular divergence compared with yeasts and metazoans reveals rapid rates of gene diversification in diatoms. Contributing factors include selective gene family expansions, differential losses and gains of genes and introns, and differential mobilization of transposable elements. Most significantly, we document the presence of hundreds of genes from bacteria. More than 300 of these gene transfers are found in both diatoms, attesting to their ancient origins, and many are likely to provide novel possibilities for metabolite management and for perception of environmental signals. These findings go a long way towards explaining the incredible diversity and success of the diatoms in contemporary oceans.

1,500 citations

Journal ArticleDOI
Brian J. Haas1, Sophien Kamoun2, Sophien Kamoun3, Michael C. Zody1, Michael C. Zody4, Rays H. Y. Jiang1, Rays H. Y. Jiang5, Robert E. Handsaker1, Liliana M. Cano2, Manfred Grabherr1, Chinnappa D. Kodira6, Chinnappa D. Kodira1, Sylvain Raffaele2, Trudy Torto-Alalibo3, Trudy Torto-Alalibo6, Tolga O. Bozkurt2, Audrey M. V. Ah-Fong7, Lucia Alvarado1, Vicky L. Anderson8, Miles R. Armstrong9, Anna O. Avrova9, Laura Baxter10, Jim Beynon10, Petra C. Boevink9, Stephanie R. Bollmann11, Jorunn I. B. Bos3, Vincent Bulone12, Guohong Cai13, Cahid Cakir3, James C. Carrington14, Megan Chawner15, Lucio Conti16, Stefano Costanzo11, Richard Ewan16, Noah Fahlgren14, Michael A. Fischbach17, Johanna Fugelstad12, Eleanor M. Gilroy9, Sante Gnerre1, Pamela J. Green18, Laura J. Grenville-Briggs8, John Griffith15, Niklaus J. Grünwald11, Karolyn Horn15, Neil R. Horner8, Chia-Hui Hu19, Edgar Huitema3, Dong-Hoon Jeong18, Alexandra M. E. Jones2, Jonathan D. G. Jones2, Richard W. Jones11, Elinor K. Karlsson1, Sridhara G. Kunjeti20, Kurt Lamour21, Zhenyu Liu3, Li-Jun Ma1, Dan MacLean2, Marcus C. Chibucos22, Hayes McDonald23, Jessica McWalters15, Harold J. G. Meijer5, William Morgan24, Paul Morris25, Carol A. Munro8, Keith O'Neill1, Keith O'Neill6, Manuel D. Ospina-Giraldo15, Andrés Pinzón, Leighton Pritchard9, Bernard H Ramsahoye26, Qinghu Ren27, Silvia Restrepo, Sourav Roy7, Ari Sadanandom16, Alon Savidor28, Sebastian Schornack2, David C. Schwartz29, Ulrike Schumann8, Ben Schwessinger2, Lauren Seyer15, Ted Sharpe1, Cristina Silvar2, Jing Song3, David J. Studholme2, Sean M. Sykes1, Marco Thines30, Marco Thines2, Peter J. I. van de Vondervoort5, Vipaporn Phuntumart25, Stephan Wawra8, R. Weide5, Joe Win2, Carolyn A. Young3, Shiguo Zhou29, William E. Fry13, Blake C. Meyers18, Pieter van West8, Jean B. Ristaino19, Francine Govers5, Paul R. J. Birch31, Stephen C. Whisson9, Howard S. Judelson7, Chad Nusbaum1 
17 Sep 2009-Nature
TL;DR: The sequence of the P. infestans genome is reported, which at ∼240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates and probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.
Abstract: Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement(1). To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world's population(1). Current annual worldwide potato crop losses due to late blight are conservatively estimated at $6.7 billion(2). Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars(3,4). Here we report the sequence of the P. infestans genome, which at similar to 240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for similar to 74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.

1,341 citations

Journal ArticleDOI
TL;DR: The number of well-supported cases of transfer from both prokaryotes and eukaryotes, many with significant functional implications, is now expanding rapidly and major recent trends include the important role of HGT in adaptation to certain specialized niches and the highly variable impact of H GT in different lineages.
Abstract: Horizontal gene transfer (HGT; also known as lateral gene transfer) has had an important role in eukaryotic genome evolution, but its importance is often overshadowed by the greater prevalence and our more advanced understanding of gene transfer in prokaryotes. Recurrent endosymbioses and the generally poor sampling of most nuclear genes from diverse lineages have also complicated the search for transferred genes. Nevertheless, the number of well-supported cases of transfer from both prokaryotes and eukaryotes, many with significant functional implications, is now expanding rapidly. Major recent trends include the important role of HGT in adaptation to certain specialized niches and the highly variable impact of HGT in different lineages.

1,185 citations

Journal ArticleDOI
04 Oct 2013-Science
TL;DR: This fungal pathogen transfers “virulent” sRNA effectors into host plant cells to suppress host immunity and achieve infection, which demonstrates a naturally occurring cross-kingdom RNAi as an advanced virulence mechanism.
Abstract: Botrytis cinerea, the causative agent of gray mold disease, is an aggressive fungal pathogen that infects more than 200 plant species. Here, we show that some B. cinerea small RNAs (Bc-sRNAs) can silence Arabidopsis and tomato genes involved in immunity. These Bc-sRNAs hijack the host RNA interference (RNAi) machinery by binding to Arabidopsis Argonaute 1 (AGO1) and selectively silencing host immunity genes. The Arabidopsis ago1 mutant exhibits reduced susceptibility to B. cinerea, and the B. cinerea dcl1 dcl2 double mutant that can no longer produce these Bc-sRNAs displays reduced pathogenicity on Arabidopsis and tomato. Thus, this fungal pathogen transfers “virulent” sRNA effectors into host plant cells to suppress host immunity and achieve infection, which demonstrates a naturally occurring cross-kingdom RNAi as an advanced virulence mechanism.

927 citations

Journal ArticleDOI
TL;DR: This review describes the effector repertoires of 84 plant-colonizing fungi and focuses on the mechanisms that allow these fungal effectors to promote virulence or compatibility, discuss common plant nodes that are targeted by effectors, and provide recent insights into effector evolution.
Abstract: Plants can be colonized by fungi that have adopted highly diverse lifestyles, ranging from symbiotic to necrotrophic. Colonization is governed in all systems by hundreds of secreted fungal effector molecules. These effectors suppress plant defense responses and modulate plant physiology to accommodate fungal invaders and provide them with nutrients. Fungal effectors either function in the interaction zone between the fungal hyphae and host or are transferred to plant cells. This review describes the effector repertoires of 84 plant-colonizing fungi. We focus on the mechanisms that allow these fungal effectors to promote virulence or compatibility, discuss common plant nodes that are targeted by effectors, and provide recent insights into effector evolution. In addition, we address the issue of effector uptake in plant cells and highlight open questions and future challenges.

797 citations