scispace - formally typeset
Search or ask a question
Author

Felipe G. Nievinski

Bio: Felipe G. Nievinski is an academic researcher from Universidade Federal do Rio Grande do Sul. The author has contributed to research in topics: Global Positioning System & Numerical weather prediction. The author has an hindex of 17, co-authored 39 publications receiving 1253 citations. Previous affiliations of Felipe G. Nievinski include Sao Paulo State University & University of Colorado Boulder.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, it is shown that changes in snow depth can be clearly tracked in the corresponding multipath modulation of the GPS signal, which can be used to estimate snow depth.
Abstract: [1] Snow is an important component of the climate system and a critical storage component in the hydrologic cycle. However, in situ observations of snow distribution are sparse, and remotely sensed products are imprecise and only available at a coarse spatial scale. GPS geodesists have long recognized that snow can affect a GPS signal, but it has not been shown that a GPS receiver placed in a standard geodetic orientation can be used to measure snow depth. In this paper, it is shown that changes in snow depth can be clearly tracked in the corresponding multipath modulation of the GPS signal. Results for two spring 2009 snowstorms in Colorado show strong agreement between GPS snow depth estimates, field measurements, and nearby ultrasonic snow depth sensors. Because there are hundreds of geodetic GPS receivers operating in snowy regions of the U.S., it is possible that GPS receivers installed for plate deformation studies, surveying, and weather monitoring could be used to also estimate snow depth.

315 citations

Journal ArticleDOI
TL;DR: In this article, the authors use data from the EarthScope Plate Boundary Observatory to examine the potential for snow sensing in GPS networks and show strong correlations between the GPS snow depth estimates and the timing of snowstorms in the region.
Abstract: Accurate measurements of snowpack are needed both by scientists to model climate and by water supply managers to predict/mitigate drought and flood conditions. Existing in situ snow sensors/networks lack the necessary spatial and temporal sensitivity. Satellite measurements currently assess snow cover rather than snow depth. Existing GPS networks are a potential source of new snow data for climate scientists and water managers which complements existing snow sensors. Geodetic-quality GPS networks often provide signal-to-noise ratio data that are sensitive to snow depth at scales of ~1,000 m2, a much larger area than for other in situ sensors. However, snow depth can only be estimated at GPS sites when the modulation frequency of multipath signals can be resolved. We use data from the EarthScope Plate Boundary Observatory to examine the potential for snow sensing in GPS networks. Examples are shown for successful and unsuccessful snow retrieval sites. In particular, GPS sites in forested regions typically cannot be used for snow sensing. Multiple-year time series of snow depth are estimated from GPS sites in the Rocky Mountains. Peak snow depths ranged from 0.4 to 1.2 m. Comparisons with independent sensors show strong correlations between the GPS snow depth estimates and the timing of snowstorms in the region.

177 citations

Journal ArticleDOI
TL;DR: A fully polarimetric forward model is presented, accounting for right- and left-handed circularly polarized components of the GPS broadcast signal and of the antenna and surface responses as well, and was used to understand the multipath signature in GPS positioning applications.
Abstract: Multipath is detrimental for both GPS positioning and timing applications. However, the benefits of GPS multipath for reflectometry have become increasingly clear for soil moisture, snow depth, and vegetation growth monitoring. Most multipath forward models focus on the code modulation, adopting arbitrary values for the reflection power, phase, and delay, or they calculate the reflection delay based on a given geometry and keep reflection power empirically defined. Here, a fully polarimetric forward model is presented, accounting for right- and left-handed circularly polarized components of the GPS broadcast signal and of the antenna and surface responses as well. Starting from the fundamental direct and reflected voltages, we have defined the interferometric and error voltages, which are of more interest in reflectometry and positioning applications. We examined the effect of varying coherence on signal-to-noise ratio, carrier phase, and code pseudorange observables. The main features of the forward model are subsequently illustrated as they relate to the broadcast signal, reflector height, random surface roughness, surface material, antenna pattern, and antenna orientation. We demonstrated how the antenna orientation--upright, tipped, or upside-down--involves a number of trade-offs regarding the neglect of the antenna gain pattern, the minimization of CDMA self-interference, and the maximization of the number of satellites visible. The forward model was also used to understand the multipath signature in GPS positioning applications. For example, we have shown how geodetic GPS antennas offer little impediment for the intake of near-grazing reflections off natural surfaces, in contrast to off metal, because of the lack of diversity with respect to the direct signal--small interferometric delay and Doppler, same sense of polarization, and similar direction of arrival.

145 citations

Journal ArticleDOI
TL;DR: Data from an existing geodetic-quality GPS site near Kachemak Bay, Alaska, are analyzed for a one-year time period and can measure long-term sea-level changes in a stable terrestrial reference frame.
Abstract: For the last decade, it has been known that reflected GPS signals observed with specialized instruments could be used to measure sea level. In this letter, data from an existing geodetic-quality GPS site near Kachemak Bay, Alaska, are analyzed for a one-year time period. Daily sea-level variations are more than 7 m. Tidal coefficients have been estimated and compared with coefficients estimated from records from a traditional tide gauge at Seldovia Harbor, ~ 30 km away. The GPS and Seldovia estimates of M2 and S2 coefficients agree to better than 2%; much of this residual can be attributed to true differences in the tide over 30 km as it propagates up Kachemak Bay. For daily mean sea levels the agreement is 2.3 cm. Because a standard geodetic GPS receiver/antenna is used, this GPS instrument can measure long-term sea-level changes in a stable terrestrial reference frame.

145 citations

Journal ArticleDOI
TL;DR: In this paper, GPS-IR measurements were compared with biweekly snow surveys, a continuously operating scanning laser system and an airborne light detection and ranging (LIDAR) measurement.
Abstract: Snow is a critical storage component in the hydrologic cycle, but current measurement networks are sparse. In addition, the heterogeneity of snow requires surveying larger areas to measure the areal average. We presented snow measurements using GPS interferometric reflectometry (GPS-IR). GPS-IR measures a large area (~100 m2), and existing GPS installations around the world have the potential to expand existing snow measurement networks. GPS-IR uses a standard, geodetic GPS installation to measure the snow surface via the reflected component of the signal. We reported GPS-IR snow depth measurements made at Niwot Ridge, Colorado, from October 2009 through June 2010. This site is in a topographic saddle at 3500 m elevation with a peak snow depth of 1.7 m near the GPS antenna. GPS-IR measurements are compared with biweekly snow surveys, a continuously operating scanning laser system and an airborne light detection and ranging (LIDAR) measurement. The GPS-IR measurement of peak snowpack (1.36–1.76 m) matches manual measurements (0.95–1.7 m) and the scanning laser (1.16 m). GPS-IR has RMS error of 13 cm (bias = 10 cm) compared with the laser, although differences between the measurement locations make comparison imprecise. Over the melt season, when the snowpack is more homogenous, the difference between the GPS-IR and the laser is reduced (RMS = 9 cm, bias = 6 cm). In other locations, the GPS and the LIDAR agree on which areas have more or less snow, but the GPS estimates more snow on the ground on tracks to the west (1.58 m) than the LIDAR (1.14 m). Copyright © 2011 John Wiley & Sons, Ltd.

93 citations


Cited by
More filters
Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

Journal ArticleDOI
TL;DR: A forum to review, analyze and stimulate the development, testing and implementation of mitigation and adaptation strategies at regional, national and global scales as mentioned in this paper, which contributes to real-time policy analysis and development as national and international policies and agreements are discussed.
Abstract: ▶ Addresses a wide range of timely environment, economic and energy topics ▶ A forum to review, analyze and stimulate the development, testing and implementation of mitigation and adaptation strategies at regional, national and global scales ▶ Contributes to real-time policy analysis and development as national and international policies and agreements are discussed and promulgated ▶ 94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again

2,587 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present recent efforts to understand the relative accuracies of different instrumentation and gauges with various windshield configurations to measure snowfall and highlight results from the National Center for Atmospheric Research (NCAR) Marshall Field Site.
Abstract: This paper presents recent efforts to understand the relative accuracies of different instrumentation and gauges with various windshield configurations to measure snowfall. Results from the National Center for Atmospheric Research (NCAR) Marshall Field Site will be highlighted. This site hosts a test bed to assess various solid precipitation measurement techniques and is a joint collaboration between the National Oceanic and Atmospheric Administration (NOAA), NCAR, the National Weather Service (NWS), and Federal Aviation Administration (FAA). The collaboration involves testing new gauges and other solid precipitation measurement techniques in comparison with World Meteorological Organization (WMO) reference snowfall measurements. This assessment is critical for any ongoing studies and applications, such as climate monitoring and aircraft deicing, that rely on accurate and consistent precipitation measurements.

569 citations

Journal ArticleDOI
TL;DR: In this paper, the authors advocate using the method of multiple working hypotheses for systematic and stringent testing of model alternatives in hydrology and discuss how the multiple-hypothesis approach provides the flexibility to formulate alternative representations describing both individual processes and the overall system.
Abstract: Ambiguities in the representation of environmental processes have manifested themselves in a plethora of hydrological models, differing in almost every aspect of their conceptualization and implementation. The current overabundance of models is symptomatic of an insufficient scientific understanding of environmental dynamics at the catchment scale, which can be attributed to difficulties in measuring and representing the heterogeneity encountered in natural systems. This commentary advocates using the method of multiple working hypotheses for systematic and stringent testing of model alternatives in hydrology. We discuss how the multiple-hypothesis approach provides the flexibility to formulate alternative representations (hypotheses) describing both individual processes and the overall system. When combined with incisive diagnostics to scrutinize multiple model representations against observed data, this provides hydrologists with a powerful and systematic approach for model development and improvement. Multiple-hypothesis frameworks also support a broader coverage of the model hypothesis space and hence improve the quantification of predictive uncertainty arising from system and component nonidentifiabilities. As part of discussing the advantages and limitations of multiple-hypothesis frameworks, we critically review major contemporary challenges in hydrological hypothesis-testing, including exploiting different types of data to investigate the fidelity of alternative process representations, accounting for model structure ambiguities arising from major uncertainties in environmental data, quantifying regional differences in dominant hydrological processes, and the grander challenge of understanding the self-organization and optimality principles that may functionally explain and describe the heterogeneities evident in most environmental systems. We assess recent progress in these research directions, and how new advances are possible using multiple-hypothesis methodologies.

493 citations

Journal ArticleDOI
TL;DR: A review of lidar mapping procedures and error sources, potential errors unique to snow surface remote sensing in the near-infrared and visible wavelengths, and recommendations for projects using lidar for snow-depth mapping is presented in this article.
Abstract: Laser altimetry (lidar) is a remote-sensing technology that holds tremendous promise for mapping snow depth in snow hydrology and avalanche applications. Recently lidar has seen a dramatic widening of applications in the natural sciences, resulting in technological improvements and an increase in the availability of both airborne and ground-based sensors. Modern sensors allow mapping of vegetation heights and snow or ground surface elevations below forest canopies. Typical vertical accuracies for airborne datasets are decimeter-scale with order 1 m point spacings. Ground-based systems typically provide millimeter-scale range accuracy and sub-meter point spacing over 1 m to several kilometers. Many system parameters, such as scan angle, pulse rate and shot geometry relative to terrain gradients, require specification to achieve specific point coverage densities in forested and/or complex terrain. Additionally, snow has a significant volumetric scattering component, requiring different considerations for error estimation than for other Earth surface materials. We use published estimates of light penetration depth by wavelength to estimate radiative transfer error contributions. This paper presents a review of lidar mapping procedures and error sources, potential errors unique to snow surface remote sensing in the near-infrared and visible wavelengths, and recommendations for projects using lidar for snow-depth mapping.

401 citations