scispace - formally typeset
Search or ask a question
Author

Felipe Garcia-Sanchez

Bio: Felipe Garcia-Sanchez is an academic researcher from University of Salamanca. The author has contributed to research in topics: Magnetization & Skyrmion. The author has an hindex of 21, co-authored 81 publications receiving 4904 citations. Previous affiliations of Felipe Garcia-Sanchez include Forschungszentrum Jülich & Commissariat à l'énergie atomique et aux énergies alternatives.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors report on the design, verification and performance of mumax3, an open-source GPU-accelerated micromagnetic simulation program that solves the time and space dependent magnetization evolution in nano-to micro-scale magnets using a finite-difference discretization.
Abstract: We report on the design, verification and performance of mumax3, an open-source GPU-accelerated micromagnetic simulation program. This software solves the time- and space dependent magnetization evolution in nano- to micro scale magnets using a finite-difference discretization. Its high performance and low memory requirements allow for large-scale simulations to be performed in limited time and on inexpensive hardware. We verified each part of the software by comparing results to analytical values where available and to micromagnetic standard problems. mumax3 also offers specific extensions like MFM image generation, moving simulation window, edge charge removal and material grains.

2,209 citations

Journal ArticleDOI
TL;DR: The design, verification and performance of MUMAX3, an open-source GPU-accelerated micromagnetic simulation program that solves the time- and space dependent magnetization evolution in nano- to micro scale magnets using a finite-difference discretization is reported on.
Abstract: We report on the design, verification and performance of MUMAX3, an open-source GPU-accelerated micromagnetic simulation program. This software solves the time- and space dependent magnetization evolution in nano- to micro scale magnets using a finite-difference discretization. Its high performance and low memory requirements allow for large-scale simulations to be performed in limited time and on inexpensive hardware. We verified each part of the software by comparing results to analytical values where available and to micromagnetic standard problems. MUMAX3 also offers specific extensions like MFM image generation, moving simulation window, edge charge removal and material grains.

2,116 citations

Journal ArticleDOI
TL;DR: In this paper, an experimental measurement of the non-adiabatic spin-torque component β in perpendicularly magnetized films with narrow domain walls (1-10nm) was performed and β was found to be relatively insensitive to the wall width.
Abstract: There is considerable debate over the size and direction of the non-adiabatic component of the spin-torque generated when a current flows across a domain wall in a ferromagnet. Measurements of this property in a wall just 1–10 nm wide suggest its value is small, arising from purely magnetic dissipation mechanisms. Torques appear between charge carrier spins and local moments in regions of ferromagnetic media where spatial magnetization gradients occur, such as a domain wall, owing to an exchange interaction. This phenomenon has been predicted by different theories1,2,3,4,5,6,7 and confirmed in a number of experiments on metallic and semiconductor ferromagnets8,9,10,11,12,13,14,15,16,17,18,19. Understanding the magnitude and orientation of such spin-torques is an important problem for spin-dependent transport and current-driven magnetization dynamics, as domain-wall motion underlies a number of emerging spintronic technologies20,21. One outstanding issue concerns the non-adiabatic spin-torque component β, which has an important role in wall dynamics, but no clear consensus has yet emerged over its origin or magnitude. Here, we report an experimental measurement of β in perpendicularly magnetized films with narrow domain walls (1–10 nm). By studying thermally activated wall depinning, we deduce β from the variation of the Arrhenius transition rate with applied currents. Surprisingly, we find β to be small and relatively insensitive to the wall width, which stands in contrast to predictions from transport theories2,5,6,7. In addition, we find β to be close to the Gilbert damping constant α, which, in light of similar results on planar anisotropy systems15, suggests a universal origin for the non-adiabatic torque.

193 citations

Journal ArticleDOI
TL;DR: In this paper, a model for a spin-torque nano-oscillator based on the self-sustained oscillation of a magnetic skyrmion is presented.
Abstract: A model for a spin-torque nano-oscillator based on the self-sustained oscillation of a magnetic skyrmion is presented. The system involves a circular nanopillar geometry comprising an ultrathin film free magnetic layer with a strong Dzyaloshinkii-Moriya interaction and a polariser layer with a vortex-like spin configuration. It is shown that spin-transfer torques due to current flow perpendicular to the film plane leads to skyrmion gyration that arises from a competition between geometric confinement due to boundary edges and the vortex-like polarisation of the spin torques. A phenomenology for such oscillations is developed and quantitative analysis using micromagnetics simulations is presented. It is also shown that weak disorder due to random anisotropy variations does not influence the main characteristics of the steady-state gyration.

186 citations

Journal ArticleDOI
TL;DR: In this article, a micromagnetic study on domain wall (DW) propagation in ferromagnetic nanotubes was conducted and it was found that DWs in a tubular geometry are much more robust than ones in flat strips.
Abstract: We report on a micromagnetic study on domain wall (DW) propagation in ferromagnetic nanotubes. It is found that DWs in a tubular geometry are much more robust than ones in flat strips. This is explained by topological considerations. Our simulations show that the Walker breakdown of the DW can be completely suppressed. Constant DW velocities above 1000 m/s are achieved by small fields. A different velocity barrier of the DW propagation is encountered, which significantly reduces the DW mobility. This effect occurs as the DW reaches the phase velocity of spin waves (SWs), thereby triggering a Cherenkov-like emission of SWs.

185 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the underlying physics of the stabilization of skyrmions at room temperature and their prospective use for spintronic applications is discussed in this paper, where the development of topological spintronics holds promise for applications in the mid-term furure, even though many challenges such as the achievement of writing, processing and reading functionalities at room-temperature and in all-electrical manipulation schemes, still lie ahead.
Abstract: Magnetic skyrmions are small swirling topological defects in the magnetization texture. Their stabilization and dynamics depend strongly on their topological properties. In most cases, they are induced by chiral interactions between atomic spins in non-centrosymmetric magnetic compounds or in thin films with broken inversion symmetry. Skyrmions can be extremely small, with diameters in the nanometre range, and behave as particles that can be moved, created and annihilated, which makes them suitable for ‘abacus’-type applications in information storage and logic technologies. Until recently, skyrmions had been observed only at low temperature and, in most cases, under large applied magnetic fields. An intense research effort has led to the identification of thin-film and multilayer structures in which skyrmions are now stable at room temperature and can be manipulated by electrical currents. The development of skyrmion-based topological spintronics holds promise for applications in the mid-term furure, even though many challenges, such as the achievement of writing, processing and reading functionalities at room temperature and in all-electrical manipulation schemes, still lie ahead. Magnetic skyrmions are topologically protected spin whirls that hold promise for applications because they can be controllably moved, created and annihilated. In this Review, the underlying physics of the stabilization of skyrmions at room temperature and their prospective use for spintronic applications are discussed.

1,462 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on the recent advances on the route to devices prototypes, focusing on thin film and multilayered structures in which skyrmions are stabilized above room temperature and manipulated by current.
Abstract: Magnetic skyrmions are small swirling topological defects in the magnetization texture stabilized by the protection due to their topology. In most cases they are induced by chiral interactions between atomic spins existing in non-centrosymmetric magnetic compounds or in thin films in which inversion symmetry is broken by the presence of an interface. The skyrmions can be extremely small with diameters in the nanometer range and, importantly, they behave as particles that can be moved, created or annihilated, making them suitable for abacus-type applications in information storage, logic or neuro-inspired technologies. Up to the last years skyrmions were observed only at low temperature (and in most cases under large applied fields) but important efforts of research has been recently devoted to find thin film and multilayered structures in which skyrmions are stabilized above room temperature and manipulated by current. This article focuses on these recent advances on the route to devices prototypes.

1,023 citations

Journal ArticleDOI
TL;DR: This work designed cobalt-based multilayered thin thin metals in which the cobalt layer is sandwiched between two heavy metals and so provides additive interfacial Dzyaloshinskii-Moriya interactions (DMIs), which reach a value close to 2 mJ m(-2) in the case of the Ir|Co|Pt asymmetric multilayers.
Abstract: Facing the ever-growing demand for data storage will most probably require a new paradigm. Nanoscale magnetic skyrmions are anticipated to solve this issue as they are arguably the smallest spin textures in magnetic thin films in nature. We designed cobalt-based multilayered thin films in which the cobalt layer is sandwiched between two heavy metals and so provides additive interfacial Dzyaloshinskii-Moriya interactions (DMIs), which reach a value close to 2 mJ m(-2) in the case of the Ir|Co|Pt asymmetric multilayers. Using a magnetization-sensitive scanning X-ray transmission microscopy technique, we imaged small magnetic domains at very low fields in these multilayers. The study of their behaviour in a perpendicular magnetic field allows us to conclude that they are actually magnetic skyrmions stabilized by the large DMI. This discovery of stable sub-100 nm individual skyrmions at room temperature in a technologically relevant material opens the way for device applications in the near future.

1,023 citations

Journal ArticleDOI
TL;DR: In this paper, the authors acknowledge support from the EU FET Open RIA Grant No 766566, the Ministry of Education of the Czech Republic Grant No LM2015087 and LNSM-LNSpin.
Abstract: A M was supported by the King Abdullah University of Science and Technology (KAUST) T J acknowledges support from the EU FET Open RIA Grant No 766566, the Ministry of Education of the Czech Republic Grant No LM2015087 and LNSM-LNSpin, and the Grant Agency of the Czech Republic Grant No 19-28375X J S acknowledges the Alexander von Humboldt Foundation, EU FET Open Grant No 766566, EU ERC Synergy Grant No 610115, and the Transregional Collaborative Research Center (SFB/TRR) 173 SPIN+X K G and P G acknowledge stimulating discussions with C O Avci and financial support by the Swiss National Science Foundation (Grants No 200021-153404 and No 200020-172775) and the European Commission under the Seventh Framework Program (spOt project, Grant No 318144) A T acknowledges support by the Agence Nationale de la Recherche, Project No ANR-17-CE24-0025 (TopSky) J Ž acknowledges the Grant Agency of the Czech Republic Grant No 19-18623Y and support from the Institute of Physics of the Czech Academy of Sciences and the Max Planck Society through the Max Planck Partner Group programme

863 citations