scispace - formally typeset
Search or ask a question
Author

Felix Geser

Bio: Felix Geser is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Amyotrophic lateral sclerosis & Frontotemporal lobar degeneration. The author has an hindex of 23, co-authored 33 publications receiving 4473 citations. Previous affiliations of Felix Geser include Goethe University Frankfurt & University of Ulm.

Papers
More filters
Journal ArticleDOI
26 Aug 2010-Nature
TL;DR: It is shown that ataxin 2 (ATXN2), a polyglutamine (polyQ) protein mutated in spinocerebellar ataxia type 2, is a potent modifier of TDP-43 toxicity in animal and cellular models.
Abstract: The causes of amyotrophic lateral sclerosis (ALS), a devastating human neurodegenerative disease, are poorly understood, although the protein TDP-43 has been suggested to have a critical role in disease pathogenesis. Here we show that ataxin 2 (ATXN2), a polyglutamine (polyQ) protein mutated in spinocerebellar ataxia type 2, is a potent modifier of TDP-43 toxicity in animal and cellular models. ATXN2 and TDP-43 associate in a complex that depends on RNA. In spinal cord neurons of ALS patients, ATXN2 is abnormally localized; likewise, TDP-43 shows mislocalization in spinocerebellar ataxia type 2. To assess the involvement of ATXN2 in ALS, we analysed the length of the polyQ repeat in the ATXN2 gene in 915 ALS patients. We found that intermediate-length polyQ expansions (27-33 glutamines) in ATXN2 were significantly associated with ALS. These data establish ATXN2 as a relatively common ALS susceptibility gene. Furthermore, these findings indicate that the TDP-43-ATXN2 interaction may be a promising target for therapeutic intervention in ALS and other TDP-43 proteinopathies.

1,117 citations

Journal ArticleDOI
TL;DR: This study investigated TDP‐43 in a larger series of ALS cases, including familial cases with and without SOD1 mutations, and identified it as the major pathological protein in sporadic ALS.
Abstract: Objective Amyotrophic lateral sclerosis (ALS) is a common, fatal motor neuron disorder with no effective treatment. Approximately 10% of cases are familial ALS (FALS), and the most common genetic abnormality is superoxide dismutase-1 (SOD1) mutations. Most ALS research in the past decade has focused on the neurotoxicity of mutant SOD1, and this knowledge has directed therapeutic strategies. We recently identified TDP-43 as the major pathological protein in sporadic ALS. In this study, we investigated TDP-43 in a larger series of ALS cases (n = 111), including familial cases with and without SOD1 mutations. Methods Ubiquitin and TDP-43 immunohistochemistry was performed on postmortem tissue from sporadic ALS (n = 59), ALS with SOD1 mutations (n = 15), SOD-1–negative FALS (n = 11), and ALS with dementia (n = 26). Biochemical analysis was performed on representative cases from each group. Results All cases of sporadic ALS, ALS with dementia, and SOD1-negative FALS had neuronal and glial inclusions that were immunoreactive for both ubiquitin and TDP-43. Cases with SOD1 mutations had ubiquitin-positive neuronal inclusions; however, no cases were immunoreactive for TDP-43. Biochemical analysis of postmortem tissue from sporadic ALS and SOD1-negative FALS demonstrated pathological forms of TDP-43 that were absent in cases with SOD1 mutations. Interpretation These findings implicate pathological TDP-43 in the pathogenesis of sporadic ALS. In contrast, the absence of pathological TDP-43 in cases with SOD1 mutations implies that motor neuron degeneration in these cases may result from a different mechanism, and that cases with SOD1 mutations may not be the familial counterpart of sporadic ALS. Ann Neurol 2007;61:427–434

906 citations

Journal ArticleDOI
TL;DR: Up-to-date knowledge on the clinical diagnosis and molecular pathology of MSA is summarized and the role of additional investigations that may support a clinical diagnosis are reviewed.
Abstract: Summary Multiple system atrophy (MSA) is a sporadic neurodegenerative disorder characterised clinically by any combination of parkinsonian, autonomic, cerebellar, or pyramidal signs and pathologically by cell loss, gliosis, and glial cytoplasmic inclusions in several CNS structures. Owing to the recent advances in its molecular pathogenesis, MSA has been firmly established as an α-synucleinopathy along with other neurodegenerative diseases. In parallel, the clinical recognition of MSA has improved and the recent consensus diagnostic criteria have been widely established in the research community as well as movement disorders clinics. Although the diagnosis of this disorder is largely based on clinical expertise, several investigations have been proposed in the past decade to assist in early differential diagnosis. Symptomatic therapeutic strategies are still limited; however, several candidate neuroprotective agents have entered phase II and phase III clinical trials.

381 citations

Journal ArticleDOI
TL;DR: Findings suggest that ALS does not selectively affect only the pyramidal motor system, but rather is a multisystem neurodegenerative TDP-43 proteinopathy.
Abstract: Background Pathological 43-kDa transactivating responsive sequence DNA-binding protein (TDP-43) has been identified recently as the major disease protein in amyotrophic lateral sclerosis (ALS), and in frontotemporal lobar degeneration with ubiquitinated inclusions, with or without motor neuron disease, but the distribution of TDP-43 pathology in ALS may be more widespread than previously described. Objective To determine the extent of TDP-43 pathology in the central nervous systems of patients with clinically confirmed and autopsy confirmed diagnoses of ALS. Design Performance of an immunohistochemical whole–central nervous system scan for evidence of pathological TDP-43 in ALS patients. Setting An academic medical center. Participants We included 31 patients with clinically and pathologically confirmed ALS and 8 control participants. Main Outcome Measures Immunohistochemistry and double-labeling immunofluorescence to assess the frequency and severity of TDP-43 pathology. Results In addition to the stereotypical involvement of upper and lower motor neurons, neuronal and glial TDP-43 pathology was present in multiple areas of the central nervous systems of ALS patients, including in the nigro-striatal system, the neocortical and allocortical areas, and the cerebellum, but not in those of the controls. Conclusions These findings suggest that ALS does not selectively affect only the pyramidal motor system, but rather is a multisystem neurodegenerative TDP-43 proteinopathy.

268 citations

Journal ArticleDOI
TL;DR: Evidence of neuronal and glial TDP-43 pathology in all disease groups throughout the neuraxis is found, albeit with variations in the frequency, morphology, and distribution of T DP-43 lesions.
Abstract: Objective: To determine the extent of transactivation response DNA-binding protein with a molecular weight of 43 kDa (TDP-43) pathology in the central nervous system of patients with clinically and autopsyconfirmed diagnoses of frontotemporal lobar degeneration with and without motor neuron disease and amyotrophic lateral sclerosis with and without cognitive impairment. Design: Performance of immunohistochemical whole– central nervous system scans for evidence of pathological TDP-43 and retrospective clinical medical record review.

240 citations


Cited by
More filters
Journal ArticleDOI
27 Feb 2009-Science
TL;DR: A missense mutation in the gene encoding fused in sarcoma (FUS) in a British kindred, linked to ALS6, is identified, which suggests that a common mechanism may underlie motor neuron degeneration.
Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is familial in 10% of cases. We have identified a missense mutation in the gene encoding fused in sarcoma (FUS) in a British kindred, linked to ALS6. In a survey of 197 familial ALS index cases, we identified two further missense mutations in eight families. Postmortem analysis of three cases with FUS mutations showed FUS-immunoreactive cytoplasmic inclusions and predominantly lower motor neuron degeneration. Cellular expression studies revealed aberrant localization of mutant FUS protein. FUS is involved in the regulation of transcription and RNA splicing and transport, and it has functional homology to another ALS gene, TARDBP, which suggests that a common mechanism may underlie motor neuron degeneration.

2,373 citations

Journal ArticleDOI
TL;DR: Mechanisms of BBB dysfunction in neurodegenerative disorders, notably Alzheimer's disease, are examined, and therapeutic opportunities relating to these neurovascular deficits are highlighted.
Abstract: The neurovascular unit (NVU) comprises brain endothelial cells, pericytes or vascular smooth muscle cells, glia and neurons. The NVU controls blood-brain barrier (BBB) permeability and cerebral blood flow, and maintains the chemical composition of the neuronal 'milieu', which is required for proper functioning of neuronal circuits. Recent evidence indicates that BBB dysfunction is associated with the accumulation of several vasculotoxic and neurotoxic molecules within brain parenchyma, a reduction in cerebral blood flow, and hypoxia. Together, these vascular-derived insults might initiate and/or contribute to neuronal degeneration. This article examines mechanisms of BBB dysfunction in neurodegenerative disorders, notably Alzheimer's disease, and highlights therapeutic opportunities relating to these neurovascular deficits.

2,256 citations

Journal ArticleDOI
TL;DR: Recent findings on the roles of MAPK signaling pathways in human disorders, focusing on cancer and neurodegenerative diseases including AD, PD, and ALS are summarized.

1,929 citations

Journal ArticleDOI
TL;DR: Evidence from many independent research centers strongly supports the existence of a specific disease, as defined by the presence of A&bgr; plaques and neurofibrillary tangles.
Abstract: Clinicopathologic correlation studies are critically important for the field of Alzheimer disease (AD) research. Studies on human subjects with autopsy confirmation entail numerous potential biases that affect both their general applicability and the validity of the correlations. Many sources of data variability can weaken the apparent correlation between cognitive status and AD neuropathologic changes. Indeed, most persons in advanced old age have significant non-AD brain lesions that may alter cognition independently of AD. Worldwide research efforts have evaluated thousands of human subjects to assess the causes of cognitive impairment in the elderly, and these studies have been interpreted in different ways. We review the literature focusing on the correlation of AD neuropathologic changes (i.e. β-amyloid plaques and neurofibrillary tangles) with cognitive impairment. We discuss the various patterns of brain changes that have been observed in elderly individuals to provide a perspective for understanding AD clinicopathologic correlation and conclude that evidence from many independent research centers strongly supports the existence of a specific disease, as defined by the presence of Aβ plaques and neurofibrillary tangles. Although Aβ plaques may play a key role in AD pathogenesis, the severity of cognitive impairment correlates best with the burden of neocortical neurofibrillary tangles.

1,589 citations