scispace - formally typeset
Search or ask a question
Author

Felix Tuczek

Bio: Felix Tuczek is an academic researcher from University of Mainz. The author has contributed to research in topics: Tyrosinase & Binding site. The author has an hindex of 11, co-authored 13 publications receiving 1117 citations. Previous affiliations of Felix Tuczek include University of Milan & University of Kiel.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the spin distribution in the ground state of [Cu-2(t-Bupy)(4)(N-3)(2)](ClO4)(2) was determined from polarized neutron diffraction at 1.6 K under 50 kOe.
Abstract: This paper is devoted to the determination of the spin distribution in the spin triplet ground state of [Cu-2(t-Bupy)(4)(N-3)(2)](ClO4)(2), With t-Bupy = p-tert-butylpyridine. The crystal structure, previously solved at room temperature from X-ray diffraction, has been redetermined at 18 K from unpolarized neutron diffraction. The structure consists of binuclear cations in which Cu2+ ions are doubly bridged by azido groups in the 1,1-fashion, and noncoordinated perchlorate anions. The experimental spin distribution has been determined from polarized neutron diffraction (PND) at 1.6 K under 50 kOe. The spin populations have been found to be strongly positive on the Cu2+ ions, weakly positive on the terminal and bridging nitrogen atoms of the azido groups as well as on the nitrogen atoms of the t-Bupy ligands, and weakly negative on the central nitrogen atoms of the N-3(-) bridges. The PND results have been discussed. The spin distribution in [Cu-2(t-Bupy)(4)(N-3)2](ClO4)(2) has been analyzed as resulting from a spin delocalization from the Cu2+ ions toward the azido bridges, to which a spin polarization effect within the azido pi orbitals is superimposed. The experimental data have been compared to the results of DFT calculations. The spin density map is qualitatively reproduced; however, the DFT calculations overestimate the spin delocalization from the Cu2+ ions toward the peripheral and bridging ligands.

145 citations

Journal ArticleDOI
TL;DR: The intense resonance Raman peak at 277 cm–1, belonging to a Cu-N (axial His) stretching mode, suggests that catechol oxidase has six terminal His ligands, as known for molluscan and arthropodan hemocyanin.
Abstract: We purified two catechol oxidases from Lycopus europaeus and Populus nigra which only catalyze the oxidation of catechols to quinones without hydroxylating tyrosine. The molecular mass of the Lycopus enzyme was determined to 39 800 Da and the mass of the Populus enzyme was determined to 56 050 Da. Both catechol oxidases are inhibited by thiourea, N-phenylthiourea, dithiocarbamate, and cyanide, but show different pH behavior using catechol as substrate. Atomic absorption spectroscopic analysis found 1.5 copper atoms per protein molecule. Using EPR spectroscopy we determined 1.8 Cu per molecule catechol oxidase. Furthermore, EPR spectroscopy demonstrated that catechol oxidase is a copper enzyme of type 3. The lack of an EPR signal is due to strong antiferromagnetic coupling that requires a bridging ligand between the two copper ions in the met preparation. Addition of H2O2 to both enzymes leads to oxy catechol oxidase. In the UV/Vis spectrum two new absorption bands occur at 345 nm and 580 nm. In accordance with the oxy forms of hemocyanin and tyrosinase the absorption band at 345 nm is due to an O22– (πσ*)→Cu(II) (dx2–y2) charge transfer (CT) transition. The absorption band at 580 nm corresponds to the second O22– (πv*)→Cu(II) (dx2–y2) CT transition. The UV/Vis bands in combination with the resonance Raman spectra of oxy catechol oxidase indicate a μ-η2 : η2 binding mode for dioxygen. The intense resonance Raman peak at 277 cm–1, belonging to a Cu-N (axial His) stretching mode, suggests that catechol oxidase has six terminal His ligands, as known for molluscan and arthropodan hemocyanin.

123 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The chemistry of copper is extremely rich because it can easily access Cu0, CuI, CuII, and CuIII oxidation states allowing it to act through one-electron or two-Electron processes, which feature confer a remarkably broad range of activities allowing copper to catalyze the oxidation and oxidative union of many substrates.
Abstract: The chemistry of copper is extremely rich because it can easily access Cu0, CuI, CuII, and CuIII oxidation states allowing it to act through one-electron or two-electron processes. As a result, both radical pathways and powerful two-electron bond forming pathways via organmetallic intermediates, similar to those of palladium, can occur. In addition, the different oxidation states of copper associate well with a large number of different functional groups via Lewis acid interactions or π-coordination. In total, these feature confer a remarkably broad range of activities allowing copper to catalyze the oxidation and oxidative union of many substrates. Oxygen is a highly atom economical, environmentally benign, and abundant oxidant, which makes it ideal in many ways.1 The high activation energies in the reactions of oxygen require that catalysts be employed.2 In combination with molecular oxygen, the chemistry of copper catalysis increases exponentially since oxygen can act as either a sink for electrons (oxidase activity) and/or as a source of oxygen atoms that are incorporated into the product (oxygenase activity). The oxidation of copper with oxygen is a facile process allowing catalytic turnover in net oxidative processes and ready access to the higher CuIII oxidation state, which enables a range of powerful transformations including two-electron reductive elimination to CuI. Molecular oxygen is also not hampered by toxic byproducts, being either reduced to water, occasionally via H2O2 (oxidase activity) or incorporated into the target structure with high atom economy (oxygenase activity). Such oxidations using oxygen or air (21% oxygen) have been employed safely in numerous commodity chemical continuous and batch processes.3 However, batch reactors employing volatile hydrocarbon solvents require that oxygen concentrations be kept low in the head space (typically <5–11%) to avoid flammable mixtures, which can limit the oxygen concentration in the reaction mixture.4,5,6 A number of alternate approaches have been developed allowing oxidation chemistry to be used safely across a broader array of conditions. For example, use of carbon dioxide instead of nitrogen as a diluent leads to reduced flammability.5 Alternately, water can be added to moderate the flammability allowing even pure oxygen to be employed.6 New reactor designs also allow pure oxygen to be used instead of diluted oxygen by maintaining gas bubbles in the solvent, which greatly improves reaction rates and prevents the build up of higher concentrations of oxygen in the head space.4a,7 Supercritical carbon dioxide has been found to be advantageous as a solvent due its chemical inertness towards oxidizing agents and its complete miscibility with oxygen or air over a wide range of temperatures.8 An number of flow technologies9 including flow reactors,10 capillary flow reactors,11 microchannel/microstructure structure reactors,12 and membrane reactors13 limit the amount of or afford separation of hydrocarbon/oxygen vapor phase thereby reducing the potential for explosions. Enzymatic oxidizing systems based upon copper that exploit the many advantages and unique aspects of copper as a catalyst and oxygen as an oxidant as described in the preceding paragraphs are well known. They represent a powerful set of catalysts able to direct beautiful redox chemistry in a highly site-selective and stereoselective manner on simple as well as highly functionalized molecules. This ability has inspired organic chemists to discover small molecule catalysts that can emulate such processes. In addition, copper has been recognized as a powerful catalyst in several industrial processes (e.g. phenol polymerization, Glaser-Hay alkyne coupling) stimulating the study of the fundamental reaction steps and the organometallic copper intermediates. These studies have inspiried the development of nonenzymatic copper catalysts. For these reasons, the study of copper catalysis using molecular oxygen has undergone explosive growth, from 30 citations per year in the 1980s to over 300 citations per year in the 2000s. A number of elegant reviews on the subject of catalytic copper oxidation chemistry have appeared. Most recently, reviews provide selected coverage of copper catalysts14 or a discussion of their use in the aerobic functionalization of C–H bonds.15 Other recent reviews cover copper and other metal catalysts with a range of oxidants, including oxygen, but several reaction types are not covered.16 Several other works provide a valuable overview of earlier efforts in the field.17 This review comprehensively covers copper catalyzed oxidation chemistry using oxygen as the oxidant up through 2011. Stoichiometric reactions with copper are discussed, as necessary, to put the development of the catalytic processes in context. Mixed metal systems utilizing copper, such as palladium catalyzed Wacker processes, are not included here. Decomposition reactions involving copper/oxygen and model systems of copper enzymes are not discussed exhaustively. To facilitate analysis of the reactions under discussion, the current mechanistic hypothesis is provided for each reaction. As our understanding of the basic chemical steps involving copper improve, it is expected that many of these mechanisms will evolve accordingly.

1,326 citations

Journal ArticleDOI
17 Sep 2008-Nature
TL;DR: The development of processes for selective hydrocarbon oxidation is a goal that has long been pursued, and extensive studies have revealed the key chemical principles that underlie their efficacy as catalysts for aerobic oxidations.
Abstract: The development of processes for selective hydrocarbon oxidation is a goal that has long been pursued. An additional challenge is to make such processes environmentally friendly, for example by using non-toxic reagents and energy-efficient catalytic methods. Excellent examples are naturally occurring iron- or copper-containing metalloenzymes, and extensive studies have revealed the key chemical principles that underlie their efficacy as catalysts for aerobic oxidations. Important inroads have been made in applying this knowledge to the development of synthetic catalysts that model enzyme function. Such biologically inspired hydrocarbon oxidation catalysts hold great promise for wide-ranging synthetic applications.

1,151 citations

Journal ArticleDOI
TL;DR: Using RNA interference against phenoloxidase or in specific host-pathogen interactions where the pathogen prevents melanin production by the host, convincing data have confirmed the importance of this cascade in invertebrate innate immunity.

1,047 citations