scispace - formally typeset
Search or ask a question
Author

Felix W. Landerer

Bio: Felix W. Landerer is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Sea level & Effects of global warming on oceans. The author has an hindex of 34, co-authored 81 publications receiving 6167 citations. Previous affiliations of Felix W. Landerer include Jet Propulsion Laboratory & Max Planck Society.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the accuracy of global-gridded terrestrial water storage (TWS) estimates derived from temporal gravity field variations observed by the Gravity Recovery and Climate Experiment (GRACE) satellites is assessed.
Abstract: [1] We assess the accuracy of global-gridded terrestrial water storage (TWS) estimates derived from temporal gravity field variations observed by the Gravity Recovery and Climate Experiment (GRACE) satellites. The TWS data set has been corrected for signal modification due to filtering and truncation. Simulations of terrestrial water storage variations from land-hydrology models are used to infer relationships between regional time series representing different spatial scales. These relationships, which are independent of the actual GRACE data, are used to extrapolate the GRACE TWS estimates from their effective spatial resolution (length scales of a few hundred kilometers) to finer spatial scales (∼100 km). Gridded, scaled data like these enable users who lack expertise in processing and filtering the standard GRACE spherical harmonic geopotential coefficients to estimate the time series of TWS over arbitrarily shaped regions. In addition, we provide gridded fields of leakage and GRACE measurement errors that allow users to rigorously estimate the associated regional TWS uncertainties. These fields are available for download from the GRACE project website (available at http://grace.jpl.nasa.gov). Three scaling relationships are examined: a single gain factor based on regionally averaged time series, spatially distributed (i.e., gridded) gain factors based on time series at each grid point, and gridded-gain factors estimated as a function of temporal frequency. While regional gain factors have typically been used in previously published studies, we find that comparable accuracies can be obtained from scaled time series based on gridded gain factors. In regions where different temporal modes of TWS variability have significantly different spatial scales, gain factors based on the first two methods may reduce the accuracy of the scaled time series. In these cases, gain factors estimated separately as a function of frequency may be necessary to achieve accurate results.

1,043 citations

Journal ArticleDOI
16 May 2018-Nature
TL;DR: Analysis of 2002–2016 GRACE satellite observations of terrestrial water storage reveals substantial changes in freshwater resources globally, which are driven by natural and anthropogenic climate variability and human activities.
Abstract: Freshwater availability is changing worldwide. Here we quantify 34 trends in terrestrial water storage observed by the Gravity Recovery and Climate Experiment (GRACE) satellites during 2002–2016 and categorize their drivers as natural interannual variability, unsustainable groundwater consumption, climate change or combinations thereof. Several of these trends had been lacking thorough investigation and attribution, including massive changes in northwestern China and the Okavango Delta. Others are consistent with climate model predictions. This observation-based assessment of how the world’s water landscape is responding to human impacts and climate variations provides a blueprint for evaluating and predicting emerging threats to water and food security.

966 citations

Journal ArticleDOI
TL;DR: The mascon basis functions allow for convenient application of a priori information derived from near-global geophysical models to prevent striping in the solutions, and do not necessitate empirical filters to remove north-south stripes, lowering the dependence on using scale factors as discussed by the authors.
Abstract: We discuss several classes of improvements to gravity solutions from the Gravity Recovery and Climate Experiment (GRACE) mission. These include both improvements in background geophysical models and orbital parameterization leading to the unconstrained spherical harmonic solution JPL RL05, and an alternate JPL RL05M mass concentration (mascon) solution benefitting from those same improvements but derived in surface spherical cap mascons. The mascon basis functions allow for convenient application of a priori information derived from near-global geophysical models to prevent striping in the solutions. The resulting mass flux solutions are shown to suffer less from leakage errors than harmonic solutions, and do not necessitate empirical filters to remove north-south stripes, lowering the dependence on using scale factors (the global mean scale factor decreases by 0.17) to gain accurate mass estimates. Ocean bottom pressure (OBP) time series derived from the mascon solutions are shown to have greater correlation with in situ data than do spherical harmonic solutions (increase in correlation coefficient of 0.08 globally), particularly in low-latitude regions with small signal power (increase in correlation coefficient of 0.35 regionally), in addition to reducing the error RMS with respect to the in situ data (reduction of 0.37 cm globally, and as much as 1 cm regionally). Greenland and Antarctica mass balance estimates derived from the mascon solutions agree within formal uncertainties with previously published results. Computing basin averages for hydrology applications shows general agreement between harmonic and mascon solutions for large basins; however, mascon solutions typically have greater resolution for smaller spatial regions, in particular when studying secular signals.

740 citations

Journal ArticleDOI
TL;DR: The Gravity Recovery and Climate Experiment mission allows monitoring of changes in hydrology and the cryosphere with terrestrial and ocean applications and its contribution to the detection and quantification of climate change signals is focused on.
Abstract: Time-resolved satellite gravimetry has revolutionized understanding of mass transport in the Earth system. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) has enabled monitoring of the terrestrial water cycle, ice sheet and glacier mass balance, sea level change and ocean bottom pressure variations and understanding responses to changes in the global climate system. Initially a pioneering experiment of geodesy, the time-variable observations have matured into reliable mass transport products, allowing assessment and forecast of a number of important climate trends and improve service applications such as the U.S. Drought Monitor. With the successful launch of the GRACE Follow-On mission, a multi decadal record of mass variability in the Earth system is within reach.

468 citations

Journal ArticleDOI
TL;DR: In this article, a Coastline Resolution Improvement (CRI) filter is developed to reduce leakage errors across coastlines, and a set of gain factors is derived to reduce the leakage errors for continental hydrology applications.
Abstract: Recent advances in processing data from the Gravity Recovery and Climate Experiment (GRACE) have led to a new generation of gravity solutions constrained within a Bayesian framework to remove correlated errors rather than relying on empirical filters. The JPL RL05M mascon solution is one such solution, solving for mass variations using spherical cap mass concentration elements (mascons), while relying on external information provided by near-global geophysical models to constrain the solution. This new gravity solution is fundamentally different than the traditional spherical harmonic gravity solution, and as such, requires different care when postprocessing. Here, we discuss two classes of postprocessing considerations for the JPL RL05M GRACE mascon solution: (1) reducing leakage errors across land/ocean boundaries, and (2) scaling the solutions to account for leakage errors introduced through parameterizing the gravity solution in terms of mascons. A Coastline Resolution Improvement (CRI) filter is developed to reduce leakage errors across coastlines. Synthetic simulations reveal a reduction in leakage errors of ∼50%, such that residual leakage errors are ∼1 cm equivalent water height (EWH) averaged globally. A set of gain factors is derived to reduce leakage errors for continental hydrology applications. The combined effect of the CRI filter coupled with application of the gain factors, is shown to reduce leakage errors when determining the mass balance of large (>160,000 km2) hydrological basins from 11% - 30% (0.6-1.5 mm EWH) averaged globally, with local improvements up to 8% - 81% (9-19 mm EWH). This article is protected by copyright. All rights reserved.

382 citations


Cited by
More filters
Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

Journal ArticleDOI
TL;DR: In this article, a commonly used drought index and observational data are examined to identify the cause of these discrepancies, and the authors indicate that improvements in the quality and coverage of precipitation data and quantification of natural variability are necessary to provide a better understanding of how drought is changing.
Abstract: Recent studies have produced conflicting results about the impacts of climate change on drought. In this Perspective, a commonly used drought index and observational data are examined to identify the cause of these discrepancies. The authors indicate that improvements in the quality and coverage of precipitation data and quantification of natural variability are necessary to provide a better understanding of how drought is changing.

2,144 citations

Journal ArticleDOI
30 Nov 2012-Science
TL;DR: There is good agreement between different satellite methods—especially in Greenland and West Antarctica—and that combining satellite data sets leads to greater certainty, and the mass balance of Earth’s polar ice sheets is estimated by combining the results of existing independent techniques.
Abstract: We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth’s polar ice sheets. We find that there is good agreement between different satellite methods—especially in Greenland and West Antarctica—and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by –142 ± 49, +14 ± 43, –65 ± 26, and –20 ± 14 gigatonnes year−1, respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 ± 0.20 millimeter year−1 to the rate of global sea-level rise.

1,215 citations