scispace - formally typeset
Search or ask a question
Author

Feng Gao

Bio: Feng Gao is an academic researcher from China University of Mining and Technology. The author has contributed to research in topics: Coal & Permeability (earth sciences). The author has an hindex of 34, co-authored 178 publications receiving 3856 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The present methodology is shown to provide a useful approach to solve the local fractional nonlinear partial differential equations (LFNPDEs) in mathematical physics.
Abstract: In this paper, a family of local fractional two-dimensional Burgers-type equations (2DBEs) is investigated. The local fractional Riccati differential equation method is proposed here for the first time. The travelling wave transformation of the non-differentiable type is presented. The non-differentiable exact travelling wave solutions for the problems are obtained. The present methodology is shown to provide a useful approach to solve the local fractional nonlinear partial differential equations (LFNPDEs) in mathematical physics.

232 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the relationship between energy transformation and coal failure by conventional triaxial compression tests using five different confining pressures and found that the peak strength increased with increasing confining pressure, but the critical damage variable was almost invariant.
Abstract: Theoretical and experimental studies have revealed that energy dissipation and release play an important role in the deformation and failure of coal rocks. To determine the relationship between energy transformation and coal failure, the mechanical behaviors of coal specimens taken from a 600-m deep mine were investigated by conventional triaxial compression tests using five different confining pressures. Each coal specimen was scanned by microfocus computed tomography before and after testing to examine the crack patterns. Sieve analysis was used to measure the post-failure coal fragments, and a fractal model was developed for describing the size distribution of the fragments. Based on the test results, a damage evolution model of the rigidity degeneration of coal before the peak strength was also developed and used to determine the initial damage and critical damage variables. It was found that the peak strength increased with increasing confining pressure, but the critical damage variable was almost invariant. More new cracks were initiated in the coal specimens when there was no confining pressure or the pressure was too high. The parameters of failure energy ratio β and stress drop coefficient α are further proposed to describe the failure mode of coal under different confining pressures. The test results revealed that β was approximately linearly related to the fractal dimension of the coal fragments and that a higher failure energy ratio corresponded to a larger fractal dimension and more severe failure. The stress drop coefficient α decreased approximately exponentially with increasing confining pressure, and could be used to appropriately describe the evolution of the coal failure mode from brittle to ductile with increasing confining pressure. A large β and small α under a high confining pressure were noticed during the tests, which implied that the failure of the coal was a kind of pseudo-ductile failure. Brittle failure occurred when the confining pressure was unloaded—an observation that is important for the safety assessment of deep mines, where a high in situ stress might result in brittle failure of the coal seam, or sudden outburst.

217 citations

Journal ArticleDOI
TL;DR: A new factorization technique for nonlinear ODEs involving local fractional derivatives for the first time is proposed by making use of the traveling-wave transformation and the results illustrate that the proposed method is efficient and accurate for finding the exact solutions for a class of local fractionals occurring in mathematical physics.

182 citations

Journal ArticleDOI
TL;DR: From the fractal electrodynamics point of view, the relaxation oscillator, defined on Cantor sets in LC-electric circuit, and its exact solution using the local fractional Laplace transform are obtained.

137 citations

Journal ArticleDOI
TL;DR: In this paper, the authors employed 3D frozen stress and photoelastic technologies to characterize and visualize the stress distribution within the fractured coal under uniaxial compression and 3D printed model presented the fracture structures identical to those of the natural coal.
Abstract: Accurate characterization and visualization of the complex inner structure and stress distribution of rocks are of vital significance to solve a variety of underground engineering problems. In this paper, we incorporate several advanced technologies, such as CT scan, three-dimensional (3D) reconstruction, and 3D printing, to produce a physical model representing the natural coal rock that inherently contains complex fractures or joints. We employ 3D frozen stress and photoelastic technologies to characterize and visualize the stress distribution within the fractured rock under uniaxial compression. The 3D printed model presents the fracture structures identical to those of the natural prototype. The mechanical properties of the printed model, including uniaxial compression strength, elastic modulus, and Poissons ratio, are testified to be similar to those of the prototype coal rock. The frozen stress and photoelastic tests show that the location of stress concentration and the stress gradient around the discontinuous fractures are in good agreement with the numerical predictions of the real coal sample. The proposed method appears to be capable of visually quantifying the influences of discontinuous, irregular fractures on the strength, deformation, and stress concentration of coal rock. The method of incorporating 3D printing and frozen stress technologies shows a promising way to quantify and visualize the complex fracture structures and their influences on 3D stress distribution of underground rocks, which can also be used to verify numerical simulations.

130 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

11 Jun 2010
Abstract: The validity of the cubic law for laminar flow of fluids through open fractures consisting of parallel planar plates has been established by others over a wide range of conditions with apertures ranging down to a minimum of 0.2 µm. The law may be given in simplified form by Q/Δh = C(2b)3, where Q is the flow rate, Δh is the difference in hydraulic head, C is a constant that depends on the flow geometry and fluid properties, and 2b is the fracture aperture. The validity of this law for flow in a closed fracture where the surfaces are in contact and the aperture is being decreased under stress has been investigated at room temperature by using homogeneous samples of granite, basalt, and marble. Tension fractures were artificially induced, and the laboratory setup used radial as well as straight flow geometries. Apertures ranged from 250 down to 4µm, which was the minimum size that could be attained under a normal stress of 20 MPa. The cubic law was found to be valid whether the fracture surfaces were held open or were being closed under stress, and the results are not dependent on rock type. Permeability was uniquely defined by fracture aperture and was independent of the stress history used in these investigations. The effects of deviations from the ideal parallel plate concept only cause an apparent reduction in flow and may be incorporated into the cubic law by replacing C by C/ƒ. The factor ƒ varied from 1.04 to 1.65 in these investigations. The model of a fracture that is being closed under normal stress is visualized as being controlled by the strength of the asperities that are in contact. These contact areas are able to withstand significant stresses while maintaining space for fluids to continue to flow as the fracture aperture decreases. The controlling factor is the magnitude of the aperture, and since flow depends on (2b)3, a slight change in aperture evidently can easily dominate any other change in the geometry of the flow field. Thus one does not see any noticeable shift in the correlations of our experimental results in passing from a condition where the fracture surfaces were held open to one where the surfaces were being closed under stress.

1,557 citations