scispace - formally typeset
Search or ask a question
Author

Fenyu Hu

Bio: Fenyu Hu is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Graph (abstract data type) & Curse of dimensionality. The author has an hindex of 4, co-authored 9 publications receiving 103 citations.

Papers
More filters
Proceedings ArticleDOI
Fenyu Hu1, Yanqiao Zhu1, Shu Wu1, Liang Wang1, Tieniu Tan1 
01 Aug 2019
TL;DR: A novel deep Hierarchical Graph Convolutional Network (H-GCN) for semi-supervised node classification, which first repeatedly aggregates structurally similar nodes to hyper-nodes and then refines the coarsened graph to the original to restore the representation for each node.
Abstract: Graph convolutional networks (GCNs) have been successfully applied in node classification tasks of network mining. However, most of these models based on neighborhood aggregation are usually shallow and lack the "graph pooling" mechanism, which prevents the model from obtaining adequate global information. In order to increase the receptive field, we propose a novel deep Hierarchical Graph Convolutional Network (H-GCN) for semi-supervised node classification. H-GCN first repeatedly aggregates structurally similar nodes to hyper-nodes and then refines the coarsened graph to the original to restore the representation for each node. Instead of merely aggregating one- or two-hop neighborhood information, the proposed coarsening procedure enlarges the receptive field for each node, hence more global information can be captured. The proposed H-GCN model shows strong empirical performance on various public benchmark graph datasets, outperforming state-of-the-art methods and acquiring up to 5.9% performance improvement in terms of accuracy. In addition, when only a few labeled samples are provided, our model gains substantial improvements.

98 citations

Journal ArticleDOI
TL;DR: This paper theoretically prove that coefficients of the neighborhood interacting terms are relatively small in current models, which explains why GCNs barely outperforms linear models, and presents a novel GraphAIR framework which models the neighborhood interaction in addition to neighborhood aggregation.

33 citations

Posted Content
Fenyu Hu1, Yanqiao Zhu1, Shu Wu1, Liang Wang1, Tieniu Tan1 
TL;DR: Zhang et al. as mentioned in this paper proposed a deep hierarchical graph convolutional network (H-GCN) for semi-supervised node classification, which first repeatedly aggregates structurally similar nodes to hyper-nodes and then refines the coarsened graph to the original to restore the representation for each node.
Abstract: Graph convolutional networks (GCNs) have been successfully applied in node classification tasks of network mining. However, most of these models based on neighborhood aggregation are usually shallow and lack the "graph pooling" mechanism, which prevents the model from obtaining adequate global information. In order to increase the receptive field, we propose a novel deep Hierarchical Graph Convolutional Network (H-GCN) for semi-supervised node classification. H-GCN first repeatedly aggregates structurally similar nodes to hyper-nodes and then refines the coarsened graph to the original to restore the representation for each node. Instead of merely aggregating one- or two-hop neighborhood information, the proposed coarsening procedure enlarges the receptive field for each node, hence more global information can be captured. The proposed H-GCN model shows strong empirical performance on various public benchmark graph datasets, outperforming state-of-the-art methods and acquiring up to 5.9% performance improvement in terms of accuracy. In addition, when only a few labeled samples are provided, our model gains substantial improvements.

32 citations

Proceedings ArticleDOI
26 Oct 2021
TL;DR: In this paper, the authors proposed a fully hyperbolic GCN model for recommendation, where all operations are performed in Hyperbolic space, which is able to embed users/items with less distortion and capture user-item interaction relationship more accurately.
Abstract: Recently, Graph Convolution Network (GCN) based methods have achieved outstanding performance for recommendation. These methods embed users and items in Euclidean space, and perform graph convolution on user-item interaction graphs. However, real-world datasets usually exhibit tree-like hierarchical structures, which make Euclidean space less effective in capturing user-item relationship. In contrast, hyperbolic space, as a continuous analogue of a tree-graph, provides a promising alternative. In this paper, we propose a fully hyperbolic GCN model for recommendation, where all operations are performed in hyperbolic space. Utilizing the advantage of hyperbolic space, our method is able to embed users/items with less distortion and capture user-item interaction relationship more accurately. Extensive experiments on public benchmark datasets show that our method outperforms both Euclidean and hyperbolic counterparts and requires far lower embedding dimensionality to achieve comparable performance.

14 citations

Posted Content
Fenyu Hu, Yanqiao Zhu, Shu Wu, Liang Wang, Tieniu Tan 
13 Feb 2019
TL;DR: A novel deep Hierarchical Graph Convolutional Network (H-GCN) for semi-supervised node classification that first repeatedly aggregates structurally similar nodes to hyper-nodes and then refines the coarsened graph to the original to restore the representation for each node.
Abstract: Graph convolutional networks (GCNs) have been successfully applied in node classification tasks of network mining. However, most of models based on neighborhood aggregation are usually shallow and lack the "graph pooling" mechanism, which prevents the model from obtaining adequate global information. In order to increase the receptive field, we propose a novel deep Hierarchical Graph Convolutional Network (H-GCN) for semi-supervised node classification. H-GCN first repeatedly aggregates structurally similar nodes to hyper-nodes and then refines the coarsened graph to the original to restore the representation for each node. Instead of merely aggregating one- or two-hop neighborhood information, the proposed coarsening procedure enlarges the receptive field for each original node, hence more global information can be learned. Comprehensive experiments conducted on public datasets demonstrate effectiveness of the proposed method over the state-of-art methods. Notably, our model gains substantial improvements when only very few labeled samples are provided.

6 citations


Cited by
More filters
Proceedings ArticleDOI
19 Apr 2021
TL;DR: This paper proposes a novel graph contrastive representation learning method with adaptive augmentation that incorporates various priors for topological and semantic aspects of the graph that consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts.
Abstract: Recently, contrastive learning (CL) has emerged as a successful method for unsupervised graph representation learning. Most graph CL methods first perform stochastic augmentation on the input graph to obtain two graph views and maximize the agreement of representations in the two views. Despite the prosperous development of graph CL methods, the design of graph augmentation schemes—a crucial component in CL—remains rarely explored. We argue that the data augmentation schemes should preserve intrinsic structures and attributes of graphs, which will force the model to learn representations that are insensitive to perturbation on unimportant nodes and edges. However, most existing methods adopt uniform data augmentation schemes, like uniformly dropping edges and uniformly shuffling features, leading to suboptimal performance. In this paper, we propose a novel graph contrastive representation learning method with adaptive augmentation that incorporates various priors for topological and semantic aspects of the graph. Specifically, on the topology level, we design augmentation schemes based on node centrality measures to highlight important connective structures. On the node attribute level, we corrupt node features by adding more noise to unimportant node features, to enforce the model to recognize underlying semantic information. We perform extensive experiments of node classification on a variety of real-world datasets. Experimental results demonstrate that our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts, which validates the effectiveness of the proposed contrastive framework with adaptive augmentation.

359 citations

Posted Content
TL;DR: This paper proposes a novel framework for unsupervised graph representation learning by leveraging a contrastive objective at the node level, and generates two graph views by corruption and learns node representations by maximizing the agreement of node representations in these two views.
Abstract: Graph representation learning nowadays becomes fundamental in analyzing graph-structured data. Inspired by recent success of contrastive methods, in this paper, we propose a novel framework for unsupervised graph representation learning by leveraging a contrastive objective at the node level. Specifically, we generate two graph views by corruption and learn node representations by maximizing the agreement of node representations in these two views. To provide diverse node contexts for the contrastive objective, we propose a hybrid scheme for generating graph views on both structure and attribute levels. Besides, we provide theoretical justification behind our motivation from two perspectives, mutual information and the classical triplet loss. We perform empirical experiments on both transductive and inductive learning tasks using a variety of real-world datasets. Experimental experiments demonstrate that despite its simplicity, our proposed method consistently outperforms existing state-of-the-art methods by large margins. Moreover, our unsupervised method even surpasses its supervised counterparts on transductive tasks, demonstrating its great potential in real-world applications.

300 citations

Proceedings ArticleDOI
22 Apr 2020
TL;DR: This work proposes TextING for inductive text classification via GNN, which first builds individual graphs for each document and then uses GNN to learn the fine-grained word representations based on their local structure, which can also effectively produce embeddings for unseen words in the new document.
Abstract: Text classification is fundamental in natural language processing (NLP) and Graph Neural Networks (GNN) are recently applied in this task. However, the existing graph-based works can neither capture the contextual word relationships within each document nor fulfil the inductive learning of new words. Therefore in this work, to overcome such problems, we propose TextING for inductive text classification via GNN. We first build individual graphs for each document and then use GNN to learn the fine-grained word representations based on their local structure, which can also effectively produce embeddings for unseen words in the new document. Finally, the word nodes are aggregated as the document embedding. Extensive experiments on four benchmark datasets show that our method outperforms state-of-the-art text classification methods.

194 citations

Proceedings ArticleDOI
TL;DR: Wang et al. as mentioned in this paper proposed a graph contrastive representation learning method with adaptive augmentation that incorporates various priors for topological and semantic aspects of the graph to improve the performance.
Abstract: Recently, contrastive learning (CL) has emerged as a successful method for unsupervised graph representation learning. Most graph CL methods first perform stochastic augmentation on the input graph to obtain two graph views and maximize the agreement of representations in the two views. Despite the prosperous development of graph CL methods, the design of graph augmentation schemes -- a crucial component in CL -- remains rarely explored. We argue that the data augmentation schemes should preserve intrinsic structures and attributes of graphs, which will force the model to learn representations that are insensitive to perturbation on unimportant nodes and edges. However, most existing methods adopt uniform data augmentation schemes, like uniformly dropping edges and uniformly shuffling features, leading to suboptimal performance. In this paper, we propose a novel graph contrastive representation learning method with adaptive augmentation that incorporates various priors for topological and semantic aspects of the graph. Specifically, on the topology level, we design augmentation schemes based on node centrality measures to highlight important connective structures. On the node attribute level, we corrupt node features by adding more noise to unimportant node features, to enforce the model to recognize underlying semantic information. We perform extensive experiments of node classification on a variety of real-world datasets. Experimental results demonstrate that our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts, which validates the effectiveness of the proposed contrastive framework with adaptive augmentation.

147 citations

Proceedings ArticleDOI
09 Jul 2020
TL;DR: Experiments on real-world datasets demonstrate that GraphNAS can design a novel network architecture that rivals the best human-invented architecture in terms of validation set accuracy and in a transfer learning task, it is observed that graph neural architectures designed by GraphNAS, when transferred to new datasets, still gain improvement in Terms of prediction accuracy.
Abstract: Graph neural networks (GNNs) emerged recently as a powerful tool for analyzing non-Euclidean data such as social network data. Despite their success, the design of graph neural networks requires heavy manual work and domain knowledge. In this paper, we present a graph neural architecture search method (GraphNAS) that enables automatic design of the best graph neural architecture based on reinforcement learning. Specifically, GraphNAS uses a recurrent network to generate variable-length strings that describe the architectures of graph neural networks, and trains the recurrent network with policy gradient to maximize the expected accuracy of the generated architectures on a validation data set. Furthermore, to improve the search efficiency of GraphNAS on big networks, GraphNAS restricts the search space from an entire architecture space to a sequential concatenation of the best search results built on each single architecture layer. Experiments on real-world datasets demonstrate that GraphNAS can design a novel network architecture that rivals the best human-invented architecture in terms of validation set accuracy. Moreover, in a transfer learning task we observe that graph neural architectures designed by GraphNAS, when transferred to new datasets, still gain improvement in terms of prediction accuracy.

120 citations