scispace - formally typeset
Search or ask a question
Author

Fernand Meyer

Other affiliations: Colorado School of Mines
Bio: Fernand Meyer is an academic researcher from Mines ParisTech. The author has contributed to research in topics: Image processing & Image segmentation. The author has an hindex of 27, co-authored 89 publications receiving 5289 citations. Previous affiliations of Fernand Meyer include Colorado School of Mines.


Papers
More filters
Journal ArticleDOI
TL;DR: The classical shortest paths algorithms of the graph theory are revisited in order to derive new watershed algorithms, which are either new or more easy to implement in hardware.

1,355 citations

Journal ArticleDOI
TL;DR: It is shown that Sigfox and LoRa are advantageous in terms of battery lifetime, capacity, and cost, and NB-IoT offers benefits interms of latency and quality of service.

1,002 citations

Book ChapterDOI
03 Oct 2018
TL;DR: The principles of morphological segmentation will be presented and illustrated by means of examples, starting from the simplest ones and introducing step by step more complex segmentation tools.
Abstract: This chapter presents the principles of morphological segmentation Segmentation is one of the key problems in image processing In fact, one should say segmentations because there exist as many techniques as there are specific situations An original method of segmentation based on the use of watershed lines has been developed in the framework of mathematical morphology The chapter describes some useful morphological tools for segmentation: gradient, top-hat transform, distance function, geodesic distance function, and geodesic reconstructions The gradient image is used in the watershed transformation, because the main criterion for the segmentation in many applications is the homogeneity of the gray values of the objects present in the image The problems encountered in the segmentation process will be best illustrated by presenting a complete and typical segmentation problem in the field of automated cytology The oversegmentation produced by direct construction of the watershed line is due to the fact that every regional minimum becomes the center of a catchment basin

480 citations

Journal ArticleDOI
01 Apr 2013-Irbm
TL;DR: In this paper, a complete prototype for the automatic detection of normal examinations on a teleophthalmology network for diabetic retinopathy screening is presented, which combines pathological pattern mining methods, with specific lesion detection methods, to extract information from the images.
Abstract: A complete prototype for the automatic detection of normal examinations on a teleophthalmology network for diabetic retinopathy screening is presented. The system combines pathological pattern mining methods, with specific lesion detection methods, to extract information from the images. This information, plus patient and other contextual data, is used by a classifier to compute an abnormality risk. Such a system should reduce the burden on readers on teleophthalmology networks.

316 citations

Proceedings Article
07 Apr 1992
TL;DR: The author extends the traditional method of segmentation based on the watershed transform to the segmentation of color images and illustrates it, with paintings.
Abstract: Segmentation is a key problems in image processing. In the framework of mathematical morphology the traditional method of segmentation is based on the watershed transform. This method may be analysed as a region growing algorithm, starting from a set of markers for all zones of interest. The author extends it to the segmentation of color images and illustrates it, with paintings.< >

215 citations


Cited by
More filters
Journal ArticleDOI
12 Dec 2017-JAMA
TL;DR: In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints.
Abstract: Importance Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency. Objective Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin–stained tissue sections of lymph nodes of women with breast cancer and compare it with pathologists’ diagnoses in a diagnostic setting. Design, Setting, and Participants Researcher challenge competition (CAMELYON16) to develop automated solutions for detecting lymph node metastases (November 2015-November 2016). A training data set of whole-slide images from 2 centers in the Netherlands with (n = 110) and without (n = 160) nodal metastases verified by immunohistochemical staining were provided to challenge participants to build algorithms. Algorithm performance was evaluated in an independent test set of 129 whole-slide images (49 with and 80 without metastases). The same test set of corresponding glass slides was also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session, simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC). Exposures Deep learning algorithms submitted as part of a challenge competition or pathologist interpretation. Main Outcomes and Measures The presence of specific metastatic foci and the absence vs presence of lymph node metastasis in a slide or image using receiver operating characteristic curve analysis. The 11 pathologists participating in the simulation exercise rated their diagnostic confidence as definitely normal, probably normal, equivocal, probably tumor, or definitely tumor. Results The area under the receiver operating characteristic curve (AUC) for the algorithms ranged from 0.556 to 0.994. The top-performing algorithm achieved a lesion-level, true-positive fraction comparable with that of the pathologist WOTC (72.4% [95% CI, 64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image. For the whole-slide image classification task, the best algorithm (AUC, 0.994 [95% CI, 0.983-0.999]) performed significantly better than the pathologists WTC in a diagnostic simulation (mean AUC, 0.810 [range, 0.738-0.884];P Conclusions and Relevance In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints. Whether this approach has clinical utility will require evaluation in a clinical setting.

2,116 citations

Journal ArticleDOI
Luc Vincent1
TL;DR: An algorithm that is based on the notion of regional maxima and makes use of breadth-first image scannings implemented using a queue of pixels results in a hybrid gray-scale reconstruction algorithm which is an order of magnitude faster than any previously known algorithm.
Abstract: Two different formal definitions of gray-scale reconstruction are presented. The use of gray-scale reconstruction in various image processing applications discussed to illustrate the usefulness of this transformation for image filtering and segmentation tasks. The standard parallel and sequential approaches to reconstruction are reviewed. It is shown that their common drawback is their inefficiency on conventional computers. To improve this situation, an algorithm that is based on the notion of regional maxima and makes use of breadth-first image scannings implemented using a queue of pixels is introduced. Its combination with the sequential technique results in a hybrid gray-scale reconstruction algorithm which is an order of magnitude faster than any previously known algorithm. >

2,064 citations

Journal ArticleDOI
TL;DR: A set of 169 radiomics features was standardized, which enabled verification and calibration of different radiomics software and could be excellently reproduced.
Abstract: Background Radiomic features may quantify characteristics present in medical imaging. However, the lack of standardized definitions and validated reference values have hampered clinical use. Purpose To standardize a set of 174 radiomic features. Materials and Methods Radiomic features were assessed in three phases. In phase I, 487 features were derived from the basic set of 174 features. Twenty-five research teams with unique radiomics software implementations computed feature values directly from a digital phantom, without any additional image processing. In phase II, 15 teams computed values for 1347 derived features using a CT image of a patient with lung cancer and predefined image processing configurations. In both phases, consensus among the teams on the validity of tentative reference values was measured through the frequency of the modal value and classified as follows: less than three matches, weak; three to five matches, moderate; six to nine matches, strong; 10 or more matches, very strong. In the final phase (phase III), a public data set of multimodality images (CT, fluorine 18 fluorodeoxyglucose PET, and T1-weighted MRI) from 51 patients with soft-tissue sarcoma was used to prospectively assess reproducibility of standardized features. Results Consensus on reference values was initially weak for 232 of 302 features (76.8%) at phase I and 703 of 1075 features (65.4%) at phase II. At the final iteration, weak consensus remained for only two of 487 features (0.4%) at phase I and 19 of 1347 features (1.4%) at phase II. Strong or better consensus was achieved for 463 of 487 features (95.1%) at phase I and 1220 of 1347 features (90.6%) at phase II. Overall, 169 of 174 features were standardized in the first two phases. In the final validation phase (phase III), most of the 169 standardized features could be excellently reproduced (166 with CT; 164 with PET; and 164 with MRI). Conclusion A set of 169 radiomics features was standardized, which enabled verification and calibration of different radiomics software. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Kuhl and Truhn in this issue.

1,563 citations

Journal ArticleDOI
TL;DR: A critical review of several definitions of watershed transform and associated sequential algorithms is presented in this paper, where the need to distinguish between definition, algorithm specification and algorithm implementation is pointed out.
Abstract: The watershed transform is the method of choice for image segmentation in the field of mathematical morphology. We present a critical review of several definitions of the watershed transform and the associated sequential algorithms, and discuss various issues which often cause confusion in the literature. The need to distinguish between definition, algorithm specification and algorithm implementation is pointed out. Various examples are given which illustrate differences between watershed transforms based on different definitions and/or implementations. The second part of the paper surveys approaches for parallel implementation of sequential watershed algorithms.

1,439 citations

Journal ArticleDOI
TL;DR: The coupled immunohistochemical and immunocytochemical methods with high-resolution laser ablation to CyTOF mass cytometry enables the simultaneous imaging of 32 proteins and protein modifications at subcellular resolution and complements existing imaging approaches.
Abstract: Mass cytometry enables high-dimensional, single-cell analysis of cell type and state. In mass cytometry, rare earth metals are used as reporters on antibodies. Analysis of metal abundances using the mass cytometer allows determination of marker expression in individual cells. Mass cytometry has previously been applied only to cell suspensions. To gain spatial information, we have coupled immunohistochemical and immunocytochemical methods with high-resolution laser ablation to CyTOF mass cytometry. This approach enables the simultaneous imaging of 32 proteins and protein modifications at subcellular resolution; with the availability of additional isotopes, measurement of over 100 markers will be possible. We applied imaging mass cytometry to human breast cancer samples, allowing delineation of cell subpopulations and cell-cell interactions and highlighting tumor heterogeneity. Imaging mass cytometry complements existing imaging approaches. It will enable basic studies of tissue heterogeneity and function and support the transition of medicine toward individualized molecularly targeted diagnosis and therapies.

1,288 citations