scispace - formally typeset
Search or ask a question
Author

Fernando D.T. Meyer

Bio: Fernando D.T. Meyer is an academic researcher from Universidade Federal de Pelotas. The author has contributed to research in topics: Genome-wide association study & Microbiome. The author has an hindex of 1, co-authored 1 publications receiving 6 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that genes related to microbiome composition may affect the susceptibility of individuals to psychiatric disorders, mainly schizophrenia.
Abstract: The gut microbiome is associated with psychiatric disorders; however, the molecular mechanisms mediating this association are poorly understood. The ability of host genetics to modulate the gut microbiome may be an important factor in understanding the association. In this study, we aimed to evaluate the role of genetic variants associated with the gut microbiome in the susceptibility of individuals to four psychiatric disorders: schizophrenia (SCZ), attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and major depressive disorder (MDD). A total of 201 host genetic markers associated with microbiome outcomes and reported in available genome-wide association studies (GWAS) were included in the analyses. We searched for these variants in the summary statistics of the largest GWAS on these disorders to date, which were published by the Psychiatric Genomic Consortium, and performed gene-based and gene set association analyses. Two variants were significantly associated with ASD (rs9401458 and rs9401452) and one with MDD (rs75036654). For the gene-based association analysis, eight genes were associated with SCZ (ASIC2, KCND3, ITSN1, SIPA1L3, RBMS3, BANK1, CSMD1, and LHFPL3), one with MDD (ACTL8), two with ADHD (C14orf39 and FBXL17), and one with ASD (PINX). The gene set comprising 83 genes was associated with SCZ (p = 0.047). These findings suggest that genes related to microbiome composition may affect the susceptibility of individuals to psychiatric disorders, mainly schizophrenia. Although less robust, the associations with ASD, ADHD, and MDD cannot be discarded.

18 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Results indicate that ASIC2 facilitates ASIC1a localization and function in dendritic spines and suggest that the two subunits work in concert to regulate neuronal function.
Abstract: Acid-sensing ion channel-1a (ASIC1a) mediates H+-gated current to influence normal brain physiology and impact several models of disease. Although ASIC2 subunits are widely expressed in brain and modulate ASIC1a current, their function remains poorly understood. We identified ASIC2a in dendrites, dendritic spines, and brain synaptosomes. This localization largely relied on ASIC2a binding to PSD-95 and matched that of ASIC1a, which does not coimmunoprecipitate with PSD-95. We found that ASIC2 and ASIC1a associated in brain, and through its interaction with PSD-95, ASIC2 increased ASIC1a localization in dendritic spines. Consistent with earlier work showing that acidic pH elevated spine [Ca2+]i by activating ASIC1a, loss of ASIC2 decreased the percentage of spines responding to acid. Moreover, like a reduction of ASIC1a, the number of spine synapses fell in ASIC2−/− neurons. These results indicate that ASIC2 facilitates ASIC1a localization and function in dendritic spines and suggest that the two subunits work in concert to regulate neuronal function.

15 citations

Journal ArticleDOI
TL;DR: In this article, the authors performed a narrative review of studies addressing gut microbiota alterations in patients with schizophrenia that were published in the years 2019-2020 and concluded that findings from clinical trials do not support the use of probiotics as add-on treatments in schizophrenia.
Abstract: Purpose of review Accumulating evidence indicates that there are bidirectional interactions between the gut microbiota and functioning of the central nervous system. Consequently, it has been proposed that gut microbiota alterations might play an important role in the pathophysiology of schizophrenia. Therefore, in this article, we aimed to perform a narrative review of studies addressing gut microbiota alterations in patients with schizophrenia that were published in the years 2019-2020. Recent findings Several studies have shown a number of gut microbiota alterations at various stages of schizophrenia. Some of them can be associated with neurostructural abnormalities, psychopathological symptoms, subclinical inflammation and cardiovascular risk. Experimental studies clearly show that transplantation of gut microbiota from unmedicated patients with schizophrenia to germ-free mice results in a number of behavioural impairments accompanied by altered neurotransmission. However, findings from clinical trials do not support the use of probiotics as add-on treatments in schizophrenia. Summary Gut microbiota alterations are widely observed in patients with schizophrenia and might account for various biological alterations involved in the cause of psychosis. However, longitudinal studies are still needed to conclude regarding causal associations. Well designed clinical trials are needed to investigate safety and efficacy of probiotics and prebiotics in schizophrenia.

14 citations

Journal ArticleDOI
TL;DR: In this paper , the authors explored the correlation of gut microbiome imbalance and inflammation in the pathophysiology of ADHD and found that the levels of TNF-α were negatively correlated with ADHD symptoms and diversity of the gut microbiome.
Abstract: Attention-deficit/hyperactivity disorder (ADHD) is a common childhood mental disorder with undetermined pathophysiological mechanisms. The gut microbiota and immunological dysfunction may influence brain functions and social behaviours. In the current study, we aimed to explore the correlation of gut microbiome imbalance and inflammation in the pathophysiology of ADHD. Forty-one children with ADHD and thirty-nine healthy-control (HC) individuals were recruited. Faecal samples from all participants were collected and submitted for 16 S rRNA V3-V4 amplicon microbiome sequencing analysis. The plasma levels of 10 cytokines, including TNF-α, IL-6, IL-1β, IL-2, IL-10, IL-13, IL-17A, IFN-α2, IFN-γ, and MCP-1, were determined using a custom-made sandwich enzyme-linked immunosorbent assay (ELISA) developed by Luminex Flowmetrix. There was no significant difference between the ADHD and HC groups in species diversity in the faeces, as determined with α-diversity and β-diversity analysis. In the ADHD group, three differentially abundant taxonomic clades at the genus level were observed, namely Agathobacter, Anaerostipes, and Lachnospiraceae. Top differentially abundant bacteria and representative biological pathways were identified in children with ADHD using linear discriminant analysis (LDA) effect size (LEfSe), and the phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis, respectively. The plasma levels of TNF-α were significantly lower in children with ADHD than in HCs. Within the ADHD group, the levels of TNF-α were negatively correlated with ADHD symptoms and diversity of the gut microbiome. Our study provides new insights into the association between gut microbiome dysbiosis and immune dysregulation, which may contribute to the pathophysiology of ADHD.

7 citations

Journal ArticleDOI
TL;DR: In this paper , the authors identify highly penetrant damaging mutations in genes associated with SLE/SLE-like disease in a large national cohort (UK JSLE Cohort Study) and compare demographic, clinical and laboratory features in patient sub-cohorts with ‘genetic’ SLE vs remaining SLE patients.
Abstract: Abstract Objectives Juvenile-onset systemic lupus erythematosus (jSLE) affects 15–20% of lupus patients. Clinical heterogeneity between racial groups, age groups and individual patients suggests variable pathophysiology. This study aimed to identify highly penetrant damaging mutations in genes associated with SLE/SLE-like disease in a large national cohort (UK JSLE Cohort Study) and compare demographic, clinical and laboratory features in patient sub-cohorts with ‘genetic’ SLE vs remaining SLE patients. Methods Based on a sequencing panel designed in 2018, target enrichment and next-generation sequencing were performed in 348 patients to identify damaging gene variants. Findings were integrated with demographic, clinical and treatment related datasets. Results Damaging gene variants were identified in ∼3.5% of jSLE patients. When compared with the remaining cohort, ‘genetic’ SLE affected younger children and more Black African/Caribbean patients. ‘Genetic’ SLE patients exhibited less organ involvement and damage, and neuropsychiatric involvement developed over time. Less aggressive first line treatment was chosen in ‘genetic’ SLE patients, but more second and third line agents were used. ‘Genetic’ SLE associated with anti-dsDNA antibody positivity at diagnosis and reduced ANA, anti-LA and anti-Sm antibody positivity at last visit. Conclusion Approximately 3.5% of jSLE patients present damaging gene variants associated with younger age at onset, and distinct clinical features. As less commonly observed after treatment induction, in ‘genetic’ SLE, autoantibody positivity may be the result of tissue damage and explain reduced immune complex-mediated renal and haematological involvement. Routine sequencing could allow for patient stratification, risk assessment and target-directed treatment, thereby increasing efficacy and reducing toxicity.

4 citations

Journal ArticleDOI
TL;DR: In this article, the authors used Acinetobacter johnsonii strain RTN1 to biosynthesize zinc oxide nanoparticles (ZnONPs) and found that the number of live gut bacteria in healthy and ADHD children was reduced by ZnONP, which shows an increased and reduced effect in composition of gut bacteria from healthy and hyperactive children, respectively.
Abstract: Attention-deficit hyperactivity disorder (ADHD) seriously affects children's health, and the gut microbiome has been widely hypothesized to play a role in the regulation of ADHD behavior. The present study aims to the biosynthesize of zinc oxide nanoparticles (ZnONPs) by using Acinetobacter johnsonii strain RTN1, followed by their characterization through state-of-the-art material characterization techniques, viz., UV-vis spectroscopy, Fourier transform infrared spectroscopy, and transmission and scanning electron microscopic analyses with energy dispersive spectrometry. Moreover, we investigated and compared the population composition of gut microbiota and their susceptibility to biogenic ZnONPs between healthy and ADHD children based on the traditional plate method and 16S rRNA amplicon sequence analysis. The antibacterial effect of ZnONPs against gut bacteria was also determined by measurement of live cell number, living/dead bacterial staining test, and flow cytometry observation. The present study revealed that the number of live gut bacteria in healthy children was more than 10-fold higher than that in ADHD children; however, the community structure of gut bacteria has changed, while greater diversity was found in gut bacteria from ADHD children. In addition, we found that the number of live gut bacteria in healthy and ADHD children was reduced by ZnONPs, which shows an increased and reduced effect in composition of gut bacteria from healthy and ADHD children, respectively. It was also noted that the main mechanism of ZnONPs may be to inhibit the growth of gut bacteria rather than to kill them, while the nanoparticle-resistant strains in healthy children is also different from that in ADHD children. Some representative bacteria, in particular nanoparticle-resistant bacteria, were successfully isolated and identified. Overall, this study revealed the potential correlation of ADHD with gut bacteria and provided a new possibility to prevent ADHD by the combination of nanoparticle and its resistant bacteria.

4 citations