scispace - formally typeset
Search or ask a question
Author

Fernando Gianfrancesco

Bio: Fernando Gianfrancesco is an academic researcher from National Research Council. The author has contributed to research in topics: Paget's disease of bone & Bone remodeling. The author has an hindex of 24, co-authored 87 publications receiving 2360 citations. Previous affiliations of Fernando Gianfrancesco include American Board of Legal Medicine & International Institute of Minnesota.


Papers
More filters
Journal ArticleDOI
25 May 2000-Nature
TL;DR: Most cases of familial incontinentia pigmenti are due to mutations of this locus and that a new genomic rearrangement accounts for 80% of new mutations, which means that NF-κB activation is defective in IP cells.
Abstract: Familial incontinentia pigmenti (IP; MIM 308310) is a genodermatosis that segregates as an X-linked dominant disorder and is usually lethal prenatally in males. In affected females it causes highly variable abnormalities of the skin, hair, nails, teeth, eyes and central nervous system. The prominent skin signs occur in four classic cutaneous stages: perinatal inflammatory vesicles, verrucous patches, a distinctive pattern of hyperpigmentation and dermal scarring. Cells expressing the mutated X chromosome are eliminated selectively around the time of birth, so females with IP exhibit extremely skewed X-inactivation. The reasons for cell death in females and in utero lethality in males are unknown. The locus for IP has been linked genetically to the factor VIII gene in Xq28 (ref. 3). The gene for NEMO (NF-kappaB essential modulator)/IKKgamma (IkappaB kinase-gamma) has been mapped to a position 200 kilobases proximal to the factor VIII locus. NEMO is required for the activation of the transcription factor NF-kappaB and is therefore central to many immune, inflammatory and apoptotic pathways. Here we show that most cases of IP are due to mutations of this locus and that a new genomic rearrangement accounts for 80% of new mutations. As a consequence, NF-kappaB activation is defective in IP cells.

623 citations

Journal ArticleDOI
TL;DR: Three new loci are identified and their association with PDB is confirmed in 2,215 affected individuals (cases) and 4,370 controls from seven independent populations, providing new insights into the genetic architecture and pathophysiology of PDB.
Abstract: Paget's disease of bone (PDB) is a common disorder characterized by focal abnormalities of bone remodeling We previously identified variants at the CSF1, OPTN and TNFRSF11A loci as risk factors for PDB by genome-wide association study Here we extended this study, identified three new loci and confirmed their association with PDB in 2,215 affected individuals (cases) and 4,370 controls from seven independent populations The new associations were with rs5742915 within PML on 15q24 (odds ratio (OR) = 134, P = 16 × 10(-14)), rs10498635 within RIN3 on 14q32 (OR = 144, P = 255 × 10(-11)) and rs4294134 within NUP205 on 7q33 (OR = 145, P = 845 × 10(-10)) Our data also confirmed the association of TM7SF4 (rs2458413, OR = 140, P = 738 × 10(-17)) with PDB These seven loci explained ∼13% of the familial risk of PDB These studies provide new insights into the genetic architecture and pathophysiology of PDB

163 citations

Journal ArticleDOI
TL;DR: These properties make Xq/YqPAR a model for studies of region-specific gene inactivation, telomere evolution, and involvement in sex-limited conditions.
Abstract: Human sex chromosomes, which are morphologically and genetically different, share few regions of homology. Among them, only pseudoautosomal regions (PARs) pair and recombine during meiosis. To better address the complex biology of these regions, we sequenced the telomeric 400 kb of the long arm of the human X chromosome, including 330 kb of the human Xq/YqPAR and the telomere. Sequencing reveals subregions with distinctive regulatory and evolutionary features. The proximal 295 kb contains two genes inactivated on both the inactive X and Y chromosomes [SYBL1 and a novel homologue (HSPRY3 )o fDrosophila sprouty] .T he GC-rich distal 35 kb, added in stages and much later in evolution, contains the X/Y expressed gene IL9R and a novel gene, CXYorf1, only 5 kb from the Xq telomere. These properties make Xq/YqPAR a model for studies of region-specific gene inactivation, telomere evolution, and involvement in sex-limited conditions.

118 citations

Journal ArticleDOI
TL;DR: This article identified three alternative transcripts of a novel human gene, CASC2 (cancer susceptibility candidate 2; formely C10orf5), encoding a short protein of 102 amino acids with no similarity to any other known gene product.
Abstract: Allelic deletions, which are suggestive for the presence of tumor suppressor genes, represent a common event in endometrial cancer (EC). Previous loss-of-heterozygosity studies for human chromosome 10q identified a candidate deletion interval at 10q25-q26, which we further narrowed to a 160-kb region at 10q26, bounded by markers D10S1236 and WIAF3299. Using a positional candidate approach, we identified three alternative transcripts of a novel human gene, CASC2 (cancer susceptibility candidate 2; formely C10orf5). One of such transcripts, CASC2a, encodes a short protein of 102 amino acids with no similarity to any other known gene product. Three (7%) CASC2a mutations were identified in tumor DNA from 44 EC patients. While c.-156G>T and c.22C>T (p.Pro8Ser) are sequence variants with unknown functional significance, c.84delA is a mutation with a truncation effect on the predicted protein (p. Asn28fsX50). Expression studies by real-time RT-PCR on several normal and tumor cells revealed that CASC2a mRNA is downregulated in cancer, suggesting that it may act as a potential tumor suppressor gene. The very low mutation rate seems to also indicate that inactivation of CASC2a might probably be due to mechanisms different from genetic alterations.

85 citations

Journal ArticleDOI
TL;DR: The SNP rs 6166 of the FSHR gene significantly influences BMD in postmenopausal women, and AA rs6166 women are at increased risk of post menopausal osteoporosis compared with GG rs6165 women, independently of circulating levels of FSH and estrogens.
Abstract: Objective FSH, via its receptor (FSHR), influences bone remodeling and osteoclast proliferation and activity. The aim of this study was to evaluate the influence of two single nucleotide polymorphisms (SNPs) of the FSHR gene on bone mineral density (BMD) and bone turnover markers (bone alkaline phosphatase and type I collagen C-telopeptides) in postmenopausal women. Methods Two hundred and eighty-nine unrelated postmenopausal women were genotyped for the SNPs rs1394205 and rs6166. BMD was estimated using dual-energy X-ray absorptiometry and quantitative ultrasound (QUS) methodologies. Results AA rs6166 women showed a lower BMD (femoral neck and total body), lower stiffness index (calcaneal QUS), and higher serum levels of bone turnover markers compared to GG rs6166 women. The prevalence of osteoporosis was significantly higher in AA rs6166 women compared with GG rs6166 women. These results were not influenced by circulating levels of FSH and estrogens. Conclusion The SNP rs6166 of the FSHR gene significantly influences BMD in postmenopausal women. In particular, AA rs6166 women are at increased risk of postmenopausal osteoporosis compared with GG rs6166 women, independently of circulating levels of FSH and estrogens. Previous studies have demonstrated that this SNP influences cell and tissue response to hyperstimulation of FSHR in vivo and in vitro. Our study results appear in agreement with these experimental data and with known biological actions of FSH/FSHR system in bone homeostasis.

85 citations


Cited by
More filters
Journal ArticleDOI
21 Jul 1979-BMJ
TL;DR: It is suggested that if assessment of overdoses were left to house doctors there would be an increase in admissions to psychiatric units, outpatients, and referrals to social services, but for house doctors to assess overdoses would provide no economy for the psychiatric or social services.
Abstract: admission. This proportion could already be greater in some parts of the country and may increase if referrals of cases of self-poisoning increase faster than the facilities for their assessment and management. The provision of social work and psychiatric expertise in casualty departments may be one means of preventing unnecessary medical admissions without risk to the patients. Dr Blake's and Dr Bramble's figures do not demonstrate, however, that any advantage would attach to medical teams taking over assessment from psychiatrists except that, by implication, assessments would be completed sooner by staff working on the ward full time. What the figures actually suggest is that if assessment of overdoses were left to house doctors there would be an increase in admissions to psychiatric units (by 19°U), outpatients (by 5O°'), and referrals to social services (by 140o). So for house doctors to assess overdoses would provide no economy for the psychiatric or social services. The study does not tell us what the consequences would have been for the six patients who the psychiatrists would have admitted but to whom the house doctors would have offered outpatient appointments. E J SALTER

4,497 citations

Journal ArticleDOI
TL;DR: The role of NF-κB proteins as potential therapeutic targets in clinical applications and their role in the immune system and inflammatory diseases are discussed.
Abstract: The nuclear factor-kappaB (NF-kappaB)/REL family of transcription factors has a central role in coordinating the expression of a wide variety of genes that control immune responses. There has been intense scientific activity in the NF-kappaB field owing to the involvement of these factors in the activation and regulation of key molecules that are associated with diseases ranging from inflammation to cancer. In this review, we focus on our current understanding of NF-kappaB regulation and its role in the immune system and inflammatory diseases. We also discuss the role of NF-kappaB proteins as potential therapeutic targets in clinical applications.

3,603 citations

Journal ArticleDOI
Carl Nathan1
19 Dec 2002-Nature
TL;DR: The non-inflammatory state does not arise passively from an absence of inflammatory stimuli; rather, maintenance of health requires the positive actions of specific gene products to suppress reactions to potentially inflammatory stimuli that do not warrant a full response.
Abstract: Inflammation is a complex set of interactions among soluble factors and cells that can arise in any tissue in response to traumatic, infectious, post-ischaemic, toxic or autoimmune injury. The process normally leads to recovery from infection and to healing, However, if targeted destruction and assisted repair are not properly phased, inflammation can lead to persistent tissue damage by leukocytes, lymphocytes or collagen. Inflammation may be considered in terms of its checkpoints, where binary or higher-order signals drive each commitment to escalate, go signals trigger stop signals, and molecules responsible for mediating the inflammatory response also suppress it, depending on timing and context. The non-inflammatory state does not arise passively from an absence of inflammatory stimuli; rather, maintenance of health requires the positive actions of specific gene products to suppress reactions to potentially inflammatory stimuli that do not warrant a full response.

2,525 citations

Journal ArticleDOI
TL;DR: Much progress has been made in the past two years revealing new insights into the regulation and functions of NF-kappaB, and this recent progress is covered in this review.
Abstract: The mammalian Rel/NF-κB family of transcription factors, including RelA, c-Rel, RelB, NF-κB1 (p50 and its precursor p105), and NF-κB2 (p52 and its precursor p100), plays a central role in the immune system by regulating several processes ranging from the development and survival of lymphocytes and lymphoid organs to the control of immune responses and malignant transformation. The five members of the NF-κB family are normally kept inactive in the cytoplasm by interaction with inhibitors called IκBs or the unprocessed forms of NF-κB1 and NF-κB2. A wide variety of signals emanating from antigen receptors, pattern-recognition receptors, receptors for the members of TNF and IL-1 cytokine families, and others induce differential activation of NF-κB heterodimers. Although work over the past two decades has shed significant light on the regulation of NF-κB transcription factors and their functions, much progress has been made in the past two years revealing new insights into the regulation and functions of NF-κB...

2,380 citations

Journal ArticleDOI
17 Mar 2005-Nature
TL;DR: A comprehensive X-inactivation profile of the human X chromosome is presented, representing an estimated 95% of assayable genes in fibroblast-based test systems, and suggests a remarkable and previously unsuspected degree of expression heterogeneity among females.
Abstract: In female mammals, most genes on one X chromosome are silenced as a result of X-chromosome inactivation. However, some genes escape X-inactivation and are expressed from both the active and inactive X chromosome. Such genes are potential contributors to sexually dimorphic traits, to phenotypic variability among females heterozygous for X-linked conditions, and to clinical abnormalities in patients with abnormal X chromosomes. Here, we present a comprehensive X-inactivation profile of the human X chromosome, representing an estimated 95% of assayable genes in fibroblast-based test systems. In total, about 15% of X-linked genes escape inactivation to some degree, and the proportion of genes escaping inactivation differs dramatically between different regions of the X chromosome, reflecting the evolutionary history of the sex chromosomes. An additional 10% of X-linked genes show variable patterns of inactivation and are expressed to different extents from some inactive X chromosomes. This suggests a remarkable and previously unsuspected degree of expression heterogeneity among females.

1,866 citations