scispace - formally typeset
Search or ask a question
Author

Fernando Nottebohm

Bio: Fernando Nottebohm is an academic researcher from Rockefeller University. The author has contributed to research in topics: Zebra finch & Song control system. The author has an hindex of 90, co-authored 155 publications receiving 26226 citations. Previous affiliations of Fernando Nottebohm include City University of New York & Wildlife Conservation Society.


Papers
More filters
Journal ArticleDOI
TL;DR: Central nervous pathways controlling bird son in the canary are traced using a combination of behavioral and anatomical techniques and direct connections were found onto the cells of the motor nucleus innervating the syrinx, the organ of song production.
Abstract: We have traced central nervous pathways controlling bird son in the canary using a combination of behavioral and anatomical techniques. Unilateral electrolytic brain lesions were made in adult male canaries whose son had been previously recorded and analysed on a sound spectrograph. After severral days of postoperative recording, the birds were sacrificed and their brains processed histologically for degeneration staining with the Fink-Heimer technique. Although large lesions in the neostriatum and rostral hyperstriatum had no effect on song, severe song deficits followed damage to a discrete large-celled area in the caudal hyperstriatum ventrale (HVc). Degenerating fibers were traced from this region to two other discrete nuclei in the forebrain: one in the parolfactory lobe (area X, a teardrop-shaped small-celled nucleus) and a round large-celled nucleus in the archistriatum (RA). Unilateral lesions of X had no effect on song; lesions of RA, however, caused severe song deficits. Degenerating fibers from RA joined the occipitomesencephalic tract and had widespread ipsilateral projections to the thalamus, nucleus intercollicularis of the midbrain, reticular formation, and medulla. It is of particular interest that direct connections were found onto the cells of the motor nucleus innervating the syrinx, the organ of song production. Unilateral lesions of n. intercollicularis (previously implicated in the control of vocal behavior) had little effect on song. One bilateral lesion of HVc resulted in permanent (9 months) and complete elimination of the audible components of song, although the bird assumed the posture and movements typical of song. Preliminary data suggest that lesions of the left hemisphere result in greater deficits than lesions of the right one. This finding is consistent with earlier reports that the left syrinx controls the majority of song components. Results reported here suggest a localization of vocal control in the canary brain with an overlying left hemispheric dominance.

1,664 citations

Journal ArticleDOI
08 Oct 1976-Science
TL;DR: In canaries and zebra finches, three vocal control areas in the brain are strikingly larger in males than in females, believed to be the first report of such gross sexual dimorphism in a vertebrate brain.
Abstract: In canaries and zebra finches, three vocal control areas in the brain are strikingly larger in males than in females. A fourth, area X of the lobus parolfactorius, is well developed in males of both species, less well developed in femal canaries, and absent or not recognizable in femal zebra finches. These size differences correlate well with differences in singing behavior. Males of both species learn song by reference to auditory information, and females do not normally sing. Exogenous testosterone induces singing in female canaries but not in female zebra finches. This is believed to be the first report of such gross sexual dimorphism in a vertebrate brain.

1,071 citations

Journal ArticleDOI
TL;DR: It is concluded that neuronal precursors exist in the HVc ventricular zone that incorporate tritiated thymidine during the S phase preceding their mitosis; after division these cells migrate into, and to some extent beyond, HVm, which seems to be a normally occurring phenomenon in intact adult female canaries.
Abstract: The vocal control nucleus designated HVc (hyperstriatum ventrale, pars caudalis) of adult female canaries expands in response to systemic testosterone administration, which also induces the females to sing in a male-like manner. We became interested in the possibility of neurogenesis as a potential basis for this phenomenon. Intact adult female canaries were injected with [3H]thymidine over a 2-day period. Some birds were given testosterone implants at various times before thymidine. The birds were sacrificed 5 wk after hormone implantation, and their brains were processed for autoradiography. In parallel control experiments, some birds were given implants of cholesterol instead of testosterone. All birds showed considerable numbers of labeled neurons, glia, endothelia, and ventricular zone cells in and around HVc. Ultrastructural analysis confirmed the identity of these labeled neurons. Cholesterol- and testosterone-treated birds had similar neuronal labeling indices, which ranged from 1.8% to 4.0% in HVc. Thus, neurogenesis occurred in these adults independently of exogenous hormone treatment. Conversely, both glial and endothelial proliferation rates were markedly stimulated by exogenous testosterone treatment. We determined the origin of the thymidine-incorporating neurons by sacrificing two thymidine-treated females soon after their thymidine injections, precluding any significant migration of newly labeled cells. Analysis of these brains revealed no cells of neuronal morphology present in HVc but a very heavily labeled ventricular zone overlying HVc. We conclude that neuronal precursors exist in the HVc ventricular zone that incorporate tritiated thymidine during the S phase preceding their mitosis; after division these cells migrate into, and to some extent beyond, HVc. This ventricular zone neurogenesis seems to be a normally occurring phenomenon in intact adult female canaries.

992 citations

Journal ArticleDOI
TL;DR: It is concluded that Area X and LMAN contribute differently to song acquisition: the song variability that is typical of vocal development persists following early deafness or lesions of Area X but ends abruptly following removal of LMAN.
Abstract: Song production in song birds is controlled by an efferent pathway. Appended to this pathway is a “recursive loop” that is necessary for song acquisition but not for the production of learned song. Since zebra finches learn their song by imitating external models, we speculated that the importance of the recursive loop for learning might derive from its processing of auditory feedback during song acquisition. This hypothesis was tested by comparing the effects on song in birds deafened early in life and birds with early lesions in either of two nuclei--Area X and the lateral magnocellular nucleus of the anterior neostriatum (LMAN). These nuclei are part of the recursive loop. The three treatments affected song development differently, as reflected by various parameters of the adult song of these birds. Whereas LMAN lesions resulted in songs with monotonous repetitions of a single note complex, songs of Area X-lesioned birds consisted of rambling series of unusually long and variable notes. Furthermore, whereas song of LMAN lesioned birds stabilized early, song stability as seen in intact birds was never achieved in Area X-lesioned birds. Early deafness also resulted in poorly structured and unstable song. We conclude that Area X and LMAN contribute differently to song acquisition: the song variability that is typical of vocal development persists following early deafness or lesions of Area X but ends abruptly following removal of LMAN. Apparently, LMAN plays a crucial role in fostering the kinds of circuit plasticity necessary for learning.

921 citations

Journal ArticleDOI
18 Dec 1981-Science
TL;DR: Male canaries that have reached sexual maturity can, in subsequent years, learn new song repertoires and two telencephalic song control nuclei are hypothesized to reflect an increase and then reduction in numbers of synapses and are related to the yearly ability to acquire new motor coordinations.
Abstract: Male canaries that have reached sexual maturity can, in subsequent years, learn new song repertoires. Two telencephalic song control nuclei, the hyperstriatum ventrale, pars caudale, and nucleus robustus archistriatalis are, respectively, 99 and 76 percent larger in the spring, when male canaries are producing stable adult song, than in the fall, at the end of the molt and after several months of not singing. It is hypothesized that such fluctuations reflect an increase and then reduction in numbers of synapses and are related to the yearly ability to acquire new motor coordinations.

729 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
14 Mar 1997-Science
TL;DR: Findings in this work indicate that dopaminergic neurons in the primate whose fluctuating output apparently signals changes or errors in the predictions of future salient and rewarding events can be understood through quantitative theories of adaptive optimizing control.
Abstract: The capacity to predict future events permits a creature to detect, model, and manipulate the causal structure of its interactions with its environment. Behavioral experiments suggest that learning is driven by changes in the expectations about future salient events such as rewards and punishments. Physiological work has recently complemented these studies by identifying dopaminergic neurons in the primate whose fluctuating output apparently signals changes or errors in the predictions of future salient and rewarding events. Taken together, these findings can be understood through quantitative theories of adaptive optimizing control.

8,163 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: A wide variety of data on capacity limits suggesting that the smaller capacity limit in short-term memory tasks is real is brought together and a capacity limit for the focus of attention is proposed.
Abstract: Miller (1956) summarized evidence that people can remember about seven chunks in short-term memory (STM) tasks. How- ever, that number was meant more as a rough estimate and a rhetorical device than as a real capacity limit. Others have since suggested that there is a more precise capacity limit, but that it is only three to five chunks. The present target article brings together a wide vari- ety of data on capacity limits suggesting that the smaller capacity limit is real. Capacity limits will be useful in analyses of information processing only if the boundary conditions for observing them can be carefully described. Four basic conditions in which chunks can be identified and capacity limits can accordingly be observed are: (1) when information overload limits chunks to individual stimulus items, (2) when other steps are taken specifically to block the recoding of stimulus items into larger chunks, (3) in performance discontinuities caused by the capacity limit, and (4) in various indirect effects of the capacity limit. Under these conditions, rehearsal and long-term memory cannot be used to combine stimulus items into chunks of an unknown size; nor can storage mechanisms that are not capacity- limited, such as sensory memory, allow the capacity-limited storage mechanism to be refilled during recall. A single, central capacity limit averaging about four chunks is implicated along with other, noncapacity-limited sources. The pure STM capacity limit expressed in chunks is distinguished from compound STM limits obtained when the number of separately held chunks is unclear. Reasons why pure capacity estimates fall within a narrow range are discussed and a capacity limit for the focus of attention is proposed.

5,677 citations

Journal ArticleDOI
25 Feb 2000-Science
TL;DR: Before the full potential of neural stem cells can be realized, the authors need to learn what controls their proliferation, as well as the various pathways of differentiation available to their daughter cells.
Abstract: Neural stem cells exist not only in the developing mammalian nervous system but also in the adult nervous system of all mammalian organisms, including humans. Neural stem cells can also be derived from more primitive embryonic stem cells. The location of the adult stem cells and the brain regions to which their progeny migrate in order to differentiate remain unresolved, although the number of viable locations is limited in the adult. The mechanisms that regulate endogenous stem cells are poorly understood. Potential uses of stem cells in repair include transplantation to repair missing cells and the activation of endogenous cells to provide "self-repair. " Before the full potential of neural stem cells can be realized, we need to learn what controls their proliferation, as well as the various pathways of differentiation available to their daughter cells.

4,608 citations